介绍

IBM公司成立了研究新密码体制的小组,由Tuchman博士领导,Horst. Feistel进行设计完成了Lucifer 密码。美国国家标准局NBS(美国标准技术研究所NIST的前身)采用了改进的Lucifer算法。1980 年美国国家标准协会ANSI正式采用该算法作为数据加密标准(Data Encryption Standard, DES).
DES分组长度为64比特,使用56比特密钥对64比特的明文串进行16轮加密,得到64比特的密文串。其中,使用密钥为64比特,实际使用56比特,其中8比特用作奇偶校验。如下DES算法原理图所示:
在这里插入图片描述

下面我会分别介绍各个模块


一、置换(IP置换)

1.初始置换

置换其实可以简单地理解成【将明文打乱】——将原来的64位二进制位重新排序。不同的置换中,每一位的移动情况都是不一样的。
首先你要知道:DES加密中所涉及的各种置换,都有一张置换表与其对应。置换表是用来表示:加密后,每一位在进行交换后,分别移动到哪一位上。
如下图所示:
在这里插入图片描述

上图置换表一共有64个数,初始置换IP表达的含义就是,将原来64位明文数据的第57位换到第1位,依次类推
置换表中的第2个数是49:即将输入的第49位将被换到第2位

……

置换表中的第64个数是04:即将输入的第4位将被换到第64位

二、具体步骤

1.秘钥初始化

DES处理比特,或者说二进制数字,我们知道,每四个比特构成一个十六进制数。DES加密一组64位的信息,也就是16个16进制数。为了完成加密,DES秘钥获取:

我们取16进制秘钥K为:

K = 133457799BBCDFF1

我们可以得到他的二进制形式(1为0001,3为0011,依次类推,并且将每8位写成一组。)

K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001

这里虽然得到64位秘钥,但是我们需要去掉为8的整数倍的奇偶校验位,共8个,这样得到56位秘钥。

这个64位的秘钥首先根据表格PC-1进行变换。

表PC-1
在这里插入图片描述
由于上表中第一个元素为57,这将使原秘钥的第57位变换为新秘钥K+的第一位。同理,原秘钥的第49位变换为新秘钥的第2位,,,原秘钥的第4位变换为新秘钥的最后一位,注意原秘钥中只有56位会进入新秘钥,上表也只有56个元素。
比如,对于原秘钥:

K = 0001001 0011010 0101011 0111100 1001101 1011110 1101111 1111000

我们将得到56位新秘钥:

K+ = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

然后,我们将这个密钥拆分为左右两个部分,C0和D0,每半边都有28位。

比如,对于新密钥,我们得到:

C0 = 1111000 0110011 0010101 0101111
D0 = 0101010 1011001 1001111 0001111

2.16轮迭代

DES算法需要进行16轮的迭代运算(需要16个子密钥)。

每一个迭代运算生成一个子密钥。
16轮迭代运算(经过16轮相同运算):进行某个函数运算

在这里插入图片描述
对于相同定义的C0和D0,我们现在创建16个块Cn和Dn 1<=n<=16.

每一对Cn和Dn都是由前一对Cn-1和Dn-1移位而来。具体来说,对于n=1,2,3,。。。,16,在前一轮移位的结果上,进行左移操作。什么叫左移?左移指的是将除第一位外的所有为往左移一位,将第一位移动至最后一位。
这意味着,比如说,C3和D3是C2和D2移位而来的,具体来说,通过2次左移位,C16和D16则是由C15和D15通过1次左移得到的。在所有情况下,一次左移就是将所有比特往左移动一位。使的一位后的比特的位置相较于变换前成为2,3,4,,,28,1.

比如,对于原始字谜要C0和D0,我们得到:

C0 = 1111000011001100101010101111
C1 = 1110000110011001010101011111
C2 = 1100001100110010101010111111
C3 = 0000110011001010101011111111
C4 = 0011001100101010101111111100
C5 = 1100110010101010111111110000
C6 = 0011001010101011111111000011
C7 = 1100101010101111111100001100
C8 = 0010101010111111110000110011
C9 = 0101010101111111100001100110
C10 = 0101010111111110000110011001
C11 = 0101011111111000011001100101
C12 = 0101111111100001100110010101
C13 = 0111111110000110011001010101
C14 = 1111111000011001100101010101
C15 = 1111100001100110010101010111
C16 = 1111000011001100101010101111
D0 = 0101010101100110011110001111
D1 = 1010101011001100111100011110
D2 = 0101010110011001111000111101
D3 = 0101011001100111100011110101
D4 = 0101100110011110001111010101
D5 = 0110011001111000111101010101
D6 = 1001100111100011110101010101
D7 = 0110011110001111010101010110
D8 = 1001111000111101010101011001
D9 = 0011110001111010101010110011
D10 = 1111000111101010101011001100
D11 = 1100011110101010101100110011
D12 = 0001111010101010110011001111
D13 = 0111101010101011001100111100
D14 = 1110101010101100110011110001
D15 = 1010101010110011001111000111
D16 = 0101010101100110011110001111

我们现在就可以得到第n轮的新秘钥Kn(1<=n<=16)了。具体做法是,对每一对拼合后的子秘钥CnDn,按照表PC-2执行变换:
在这里插入图片描述
每对子秘钥有56位,但是PC-2仅仅使用其中48位。

于是,第你轮新秘钥Kn的第一位来自组合秘钥CnDn的第14位,第2位来自第17位,以此类推,知道新秘钥的第48位来自组合秘钥的第32位。

比如:

对于第一轮的组合秘钥,我们有:

C1D1 = 1110000 1100110 0101010 1011111 1010101 0110011 0011110 0011110

通过PC-2的变换后,得到:

K1 = 000110 110000 001011 101111 111111 000111 000001 110010

同理,对于其他秘钥,我们得到:

K2 = 011110 011010 111011 011001 110110 111100 100111 100101
K3 = 010101 011111 110010 001010 010000 101100 111110 011001
K4 = 011100 101010 110111 010110 110110 110011 010100 011101
K5 = 011111 001110 110000 000111 111010 110101 001110 101000
K6 = 011000 111010 010100 111110 010100 000111 101100 101111
K7 = 111011 001000 010010 110111 111101 100001 100010 111100
K8 = 111101 111000 101000 111010 110000 010011 101111 111011
K9 = 111000 001101 101111 101011 111011 011110 011110 000001
K10 = 101100 011111 001101 000111 101110 100100 011001 001111
K11 = 001000 010101 111111 010011 110111 101101 001110 000110
K12 = 011101 010111 000111 110101 100101 000110 011111 101001
K13 = 100101 111100 010111 010001 111110 101011 101001 000001
K14 = 010111 110100 001110 110111 111100 101110 011100 111010
K15 = 101111 111001 000110 001101 001111 010011 111100 001010
K16 = 110010 110011 110110 001011 000011 100001 011111 110101

关于子秘钥的话题我们就到此为止,接下来我们看信息本身。

DES是一个基于组块的加密算法,这意味着无论输入还是输出都是64位长度。也就是说DES产生了一种最多2^64中的变换方法。每个64位的区块被分为2个32位的部分,左半部分L和右半部分R。

比如明文,M为

M = 0123456789ABCDEF

这里的M是16进制的,将M写成二进制,我们得到一个64位的区块:

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
L = 0000 0001 0010 0011 0100 0101 0110 0111
R = 1000 1001 1010 1011 1100 1101 1110 1111

M的第一位是0,最后一位是1,我们从左读到右。

对于明文M,我们计算一下初始变换IP(Initial permutation)。IP是重新变换数据M的每一位产生的。产生过程由下表决定,表格的下标对应新数据的下标,表格的数值x表示新数据的这一位来自旧数据的第x位。

比如,对M的区块,执行初始变换,得到:

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010

接着讲变换IP分为32位的左半边L0和右半边R0

比如,对于上例,我们得到:

L0 = 1100 1100 0000 0000 1100 1100 1111 1111
R0 = 1111 0000 1010 1010 1111 0000 1010 1010

我们接着执行16个迭代,对1<=n<=16,使用一个函数f.函数f输入两个区块,一个32位的数据块和一个48位的木曜区块Kn,输出一个32位的区块。定义+表示异或XOR。那么让n从1循环到16,我们计算:

Ln=Rn-1

Rn=Ln-1+f(Rn-1,Kn)

这样我们就得到最终区块,也就是n=16的L16R16.这个过程说白了就是,我们那前一个迭代结果的右边32位作为当前迭代的左边32位。对于当前迭代的右边32位,将它和上一个迭代的f函数的输出执行XOR运算。

比如,对于n=1,我们有:

K1 = 000110 110000 001011 101111 111111 000111 000001 110010
L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010
R1 = L0 + f(R0,K1)

剩下就是f函数是如何工作的了,为了计算f,我们首先扩展每个Rn-1,将其从32位扩展到48位,这是通过使用一张表来重复Rn-1中的一位位来实现的。我们称这个过程为函数E。也就是说函数E(Rn-1)输入32位输出48位。

定义E为函数E的输出,将其写成8组,每组6位,这些比特是通过选择输入的某些位来产的,具体选择顺序按照如下表格实现:

在这里插入图片描述

也就是说E(Rn-1)开头的三个比特分别来自Rn-1的第32、1和2位。E(Rn-1)末尾的2个比特分别来自Rn-1的第32位和第1位。

比如:给定R0,我们可以计算出E(R0):

R0 = 1111 0000 1010 1010 1111 0000 1010 1010
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101

接着在f函数中,我们对输出E(Rn-1)和秘钥Kn执行XOR运算:

Kn+E(Rn-1)

比如,对K1,E(R0),我们有:

K1 = 000110 110000 001011 101111 111111 000111 000001 110010
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101
K1+E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111

到这里我们还没有完成f函数的运算,我们仅仅使用一张表将Rn-1从32位扩展为48位,并且对这个结果和秘钥Kn执行了异或运算。我们现在有了48位的结果,或者说8组6比特数据。我们现在要对每组的6比特执行一些奇怪的操作:

我们将它作为一张被称为“S盒”的表格的地址。每组6比特都将给我们一个位于不同S盒中的地址。在哪个地址里存放着一个4比特的数字。这个4比特的数字将会替换掉原来的6个比特。最终结果就是,8组6比特的数据被转换为8组4比特(一共32位)的数据。

将上一步的48位的结果写成如下形式:

Kn+E(Rn-1)=B1B2B3B4B5B6B7B8

每个Bi都是一个6比特的分组,我们现在计算

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)

其中,Si(Bi)指的是第i个S盒的输出。

为了计算每个S函数S1,S2,,,S8,取一个6位的区块作为输入,输出一个4位的区块。决定S1的表格如下:

S1Column Number
在这里插入图片描述

如果S1是定义在这张表上的函数,B是一个6位的块,那么计算S1(B)的方法是:B的第一位和最后一位组合起来,的二进制数决定一个介于0和3之间的十进制数(或者二进制00到11之间)。设这个数为i,B的中间4位二进制数代表一个介于0到15之间的二进制数(二进制0000到1111)。设这个数为j。查表找到第i行第j列的那个数,这个是一个介于0和15之间的数,并且它是能由一个唯一的4位区块表示的。这个区块就是函数S1输入B得到的输出S1(B)。比如,对输入B=011011,第一位是0,最后一位是1,决定了行号是01,也就是十进制的1,中间4位是1101,也就是十进制的13,虽有列号是13.查表第一行第13列我们得到数字5.

这就决定了输出;5的二进制是0101,所以输出就是0101,即S1(011011)=0101。

同理,定义这8个函数S1,S2,,,S8:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
例子:对弈第一轮,我们得到这8个S盒的输出:

K1+E(R0)=011000 010001 011110 111010 100001 100110 010100 100111

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)=0101 1100 1000 0010 1011 0101 1001 0111

函数f的最后一步就是对S盒的输出进行一个变换来产生最终值:

f=P(S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8))

变换P由如下表格定义。P输入32位数据,通过下表产生32位输出:

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

比如对8个S盒的输出:

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)=0101 1100 1000 0010 1011 0101 1001 0111

我们得到:

f=0010 0011 0100 1010 1010 1001 1011 1011

那么R1=L0+f(R0,K1)

= 1100 1100 0000 0000 1100 1100 1111 1111

  • 0010 0011 0100 1010 1010 1001 1011 1011
    = 1110 1111 0100 1010 0110 0101 0100 0100

在下一轮迭代中,我们的L2=R1,这就是我们刚刚计算的结果。之后,我们必须计算R2=L1+f(R1,K2),一直完成16个迭代之后,我们有了区块L16和R16,。接着我们逆转两个区块的顺序得到一个64位的区块:

R16L16

然后,我们对其执行一个最终的IP-1,其定义如下:
在这里插入图片描述
也就是说,该变换的输出的第一位是输入的第40位,第二位是输入的8位,一直到将输入的第25位作为输出的最后一位。

比如,我们使用上述方法得到了第16轮的左右两个区块:

L16 = 0100 0011 0100 0010 0011 0010 0011 0100
R16 = 0000 1010 0100 1100 1101 1001 1001 0101

我们将两个区块调换位置,然后执行最终变换:

R16L16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100
IP-1 = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101

写成16进制得到:

85E813540F0AB405

这就是明文M=0123456789ABCDEF的密文:85E813540F0AB405

DES解密

解密就是加密的反过程,执行上述步骤,只不过在那16轮迭代中,调转左右子秘钥的位置而已。

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐