pytorch保存模型等相关参数,利用torch.save(),以及读取保存之后的文件
本文分为两部分,第一部分讲如何保存模型参数,优化器参数等等,第二部分则讲如何读取。

假设网络为model = Net(), optimizer = optim.Adam(model.parameters(), lr=args.lr), 假设在某个epoch,我们要保存模型参数,优化器参数以及epoch

一、save

  1. 先建立一个字典,保存三个参数:

state = {‘net’:model.state_dict(), ‘optimizer’:optimizer.state_dict(), ‘epoch’:epoch}

2.调用torch.save():torch.save(state, dir)

其中dir表示保存文件的绝对路径+保存文件名,如’/home/qinying/Desktop/modelpara.pth’

二、load

当你想恢复某一阶段的训练(或者进行测试)时,那么就可以读取之前保存的网络模型参数等。

checkpoint = torch.load(dir)

model.load_state_dict(checkpoint[‘net’])

optimizer.load_state_dict(checkpoint[‘optimizer’])

start_epoch = checkpoint[‘epoch’] + 1

Logo

AtomGit 是由开放原子开源基金会联合 CSDN 等生态伙伴共同推出的新一代开源与人工智能协作平台。平台坚持“开放、中立、公益”的理念,把代码托管、模型共享、数据集托管、智能体开发体验和算力服务整合在一起,为开发者提供从开发、训练到部署的一站式体验。

更多推荐