第1关 使用sklearn中的kNN算法进行分类

from sklearn.neighbors import KNeighborsClassifier

def classification(train_feature, train_label, test_feature):
    '''
    使用KNeighborsClassifier对test_feature进行分类
    :param train_feature: 训练集数据
    :param train_label: 训练集标签
    :param test_feature: 测试集数据
    :return: 测试集预测结果
    '''

    #********* Begin *********#
    clf = KNeighborsClassifier()
    clf.fit(train_feature, train_label)
    return clf.predict(test_feature)
    #********* End *********#

第2关 使用sklearn中的kNN算法进行回归

from sklearn.neighbors import KNeighborsRegressor

def regression(train_feature, train_label, test_feature):
    '''
    使用KNeighborsRegressor对test_feature进行分类
    :param train_feature: 训练集数据
    :param train_label: 训练集标签
    :param test_feature: 测试集数据
    :return: 测试集预测结果
    '''

    #********* Begin *********#
    clf=KNeighborsRegressor() 
    clf.fit(train_feature, train_label)               
    return clf.predict(test_feature)
    #********* End *********#

Logo

AtomGit 是由开放原子开源基金会联合 CSDN 等生态伙伴共同推出的新一代开源与人工智能协作平台。平台坚持“开放、中立、公益”的理念,把代码托管、模型共享、数据集托管、智能体开发体验和算力服务整合在一起,为开发者提供从开发、训练到部署的一站式体验。

更多推荐