1 约束训练

1.1 修改YOLOv8代码:

ultralytics/yolo/engine/trainer.py

添加内容:

# Backward
self.scaler.scale(self.loss).backward()

# ========== 新增 ==========
l1_lambda = 1e-2 * (1 - 0.9 * epoch / self.epochs)
for k, m in self.model.named_modules():
    if isinstance(m, nn.BatchNorm2d):
        m.weight.grad.data.add_(l1_lambda * torch.sign(m.weight.data))
        m.bias.grad.data.add_(1e-2 * torch.sign(m.bias.data))
# ========== 新增 ==========

# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= self.accumulate:
    self.optimizer_step()
    last_opt_step = ni

1.2  训练

需要注意的就是amp=False

命令行输入:
yolo train model=yolov8s.yaml epochs=100 amp=False

训练完会得到一个best.pt和last.pt,推荐用last.pt

1.3 约束训练可视化

已实现在tensorboard可视化约束训练过程BN参数的分布变化

随着训练进行(纵轴是epoch),BN层参数会逐渐从最上面的正太分布趋向于0附近。

以下是正常训练和稀疏训练的BN层参数值分布图:

右图的稀疏训练明显太早就全到0了,这样会影响精度,可以把系数1e-2改小一点1e-3,这样会稀疏的慢一点,l1_lambda = 1e-2 * (1 - 0.9 * epoch / self.epochs)
如下图:左为1e-2, 右为0.3*1e-2

2 剪枝

上一步得到的last.pt作为剪枝对象,自己创建一个prun.py文件:

这里的剪枝代码仅适用yolov8原模型,如有模块/模型的更改,则需要修改剪枝代码

需要定制改模型后的剪枝的可以私信

from ultralytics import YOLO
import torch
from ultralytics.nn.modules import Bottleneck, Conv, C2f, SPPF, Detect

yolo = YOLO("last.pt")  # 第一步约束训练得到的pt文件


model = yolo.model
ws = []
bs = []

for _, m in model.named_modules():
    if isinstance(m, torch.nn.BatchNorm2d):
        w = m.weight.abs().detach()
        b = m.bias.abs().detach()
        ws.append(w)
        bs.append(b)


factor = 0.8  # 通道保留比率


ws = torch.cat(ws)
threshold = torch.sort(ws, descending=True)[0][int(len(ws) * factor)]
print(threshold)


def _prune(c1, c2):
    wet = c1.bn.weight.data.detach()
    bis = c1.bn.bias.data.detach()
    list = []
    _threshold = threshold
    while len(list) < 8:
        list = torch.where(wet.abs() >= _threshold)[0]
        _threshold = _threshold * 0.5
    i = len(list)
    c1.bn.weight.data = wet[list]
    c1.bn.bias.data = bis[list]
    c1.bn.running_var.data = c1.bn.running_var.data[list]
    c1.bn.running_mean.data = c1.bn.running_mean.data[list]
    c1.bn.num_features = i
    c1.conv.weight.data = c1.conv.weight.data[list]
    c1.conv.out_channels = i
    if c1.conv.bias is not None:
        c1.conv.bias.data = c1.conv.bias.data[list]
    if not isinstance(c2, list):
        c2 = [c2]
    for item in c2:
        if item is not None:
            if isinstance(item, Conv):
                conv = item.conv
            else:
                conv = item
            conv.in_channels = i
            conv.weight.data = conv.weight.data[:, list]

def prune(m1, m2):
    if isinstance(m1, C2f):
        m1 = m1.cv2
    if not isinstance(m2, list):
        m2 = [m2]
    for i, item in enumerate(m2):
        if isinstance(item, C2f) or isinstance(item, SPPF):
            m2[i] = item.cv1
    _prune(m1, m2)

for _, m in model.named_modules():
    if isinstance(m, Bottleneck):
        _prune(m.cv1, m.cv2)


for _, p in yolo.model.named_parameters():
    p.requires_grad = True

# yolo.export(format="onnx")  # 导出为onnx文件
# yolo.train(data="VOC.yaml", epochs=100) # 剪枝后直接训练微调

torch.save(yolo.ckpt, "prune.pt")
print("done")

上述代码只需修改:

1. 最顶上的yolo = YOLO("last.pt")改为第一步约束训练得到的文件路径,一般为runs/detect/train/weights/last.pt

2. 最下面的torch.save(yolo.ckpt, "prune.pt")改为想要保存的路径

运行完会得到prune.pt和prune.onnx可以在netron.app网站拖入onnx文件查看是否剪枝成功了,成功的话可以看到某些通道数字为单数或者一些不规律的数字,如下图:

ff12fb7c05754527bc603dc1467acf7d.png

3 回调训练(finetune)

3.1 先要把第一步约束训练的代码注释掉

3.2  修改相关代码

修改位置:yolo/engine/trainer.py的443行左右

self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1)  # calls Model(cfg, weights)

# ========== 新增该行代码 ==========
self.model = weights
# ========== 新增该行代码 ==========

return ckpt

3.3 修改完代码就可以进行finetun训练了

命令行输入:
yolo train model=prune.pt epochs=100

结果展示:

约束训练last.pt:

aea0ced00f5f4840a13b23083a3d6f51.png

剪枝后的prune.pt:

cf894a3610e74ba2a14d5a1fae945e44.png

回调后的finetune.pt:

0c6938bab69b49edb16229194c860fc9.png

可以看到精度损失很小,但是参数量和浮点运算量下去了很多,推理速度在cpu上测试是变快了的,gpu上好像没啥变化

剪枝前后各层通道数对比:

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐