1、Yolov5损失函数分析 

 2、bbox 回归损失

 v5 使用的是 CIoU Loss,后续又优化出EIOU Loss如下所示

论文:Focal and efficient IOU loss for accurate bounding box regression

yolov5
yolov5 - Ultralytics YOLOv8的前身,是一个用于目标检测、图像分割和图像分类任务的先进模型。

 3、目标置信度损失

       目标置信度损失由正样本匹配得到的样本对计算,一是预测框中的目标置信度分数 p0,二是预测框和与之对应的目标框的 iou 值piou,其作为 ground-truth。两者计算二进制交叉熵得到最终的目标置信度损失。表示二分类交叉熵损失;表示正样本的权重公式如下:

 4、类别损失

       别损失与置信度损失类似,通过预测框的类别分数和目标框类别的 one-hot 表现来计算类别损失,目标置信度损失和类别损失使用的是带 sigmoid 的二进制交叉熵函数BCEWithLogitsLoss。

 

GitHub 加速计划 / yo / yolov5
649
37
下载
yolov5 - Ultralytics YOLOv8的前身,是一个用于目标检测、图像分割和图像分类任务的先进模型。
最近提交(Master分支:3 个月前 )
6981c274 Refactor code for speed and clarity Co-authored-by: UltralyticsAssistant <web@ultralytics.com> 3 个月前
f003c3df This commit resolves an issue where the save-csv command did not write the CSV header. The code now correctly saves the header in the CSV file. Signed-off-by: Ali Ghanbari <alighanbari446@gmail.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> 3 个月前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐