1.小波阈值去噪的基本原理

将信号通过小波变换(采用Mallat算法)后,信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。
其实质为抑制信号中无用的部分、增强有用部分。
其基本步骤为:
(1)分解:选定一种层数为N的小波对信号进行小波分解;
(2)阀值处理过程:分解后通过选取一合适的阀值,用阀值函数对各层系数进行量化;
(3)重构:用处理后的系数重构信号。

在这里插入图片描述
在这里插入图片描述
小波分解:X->ca3,cd3,cd2,cd1;小波重构:ca3,cd3,cd2,cd1->X。其中ca为低频信息、近似分量,cd为高频、细节分量。

2.小波阈值去噪需要考虑的问题

小波阀值去噪的基本问题包括三个方面:小波基的选择,阀值的选择,阀值函数的选择。
(1)小波基的选择:通常我们希望所选取的小波满足以下条件:正交性、高消失矩、紧支性、对称性或反对称性。但事实上具有上述性质的小波是不可能存在的,因为小波是对称或反对称的只有Haar小波,并且高消失矩与紧支性是一对矛盾,所以在应用的时候一般选取具有紧支的小波以及根据信号的特征来选取较为合适的小波。
(2)阀值的选择:直接影响去噪效果的一个重要因素就是阀值的选取,不同的阀值选取将有不同的去噪效果。目前主要有通用阀值(VisuShrink)、SureShrink阀值、Minimax阀值、BayesShrink阀值等。
(3)阀值函数的选择:阀值函数是修正小波系数的规则,不同的反之函数体现了不同的处理小波系数的策略。最常用的阀值函数有两种:一种是硬阀值函数,另一种是软阀值函数。还有一种介于软、硬阀值函数之间的Garrote函数。

另外,对于去噪效果好坏的评价,常用信号的信噪比(SNR)与估计信号同原始信号的均方根误差(RMSE)来判断。

3.小波阈值的实现

clear
clc
t1=clock;
 %% 载入噪声信号数据,数据为.mat格式,并且和程序放置在同一个文件夹下
load('lng.mat');%matrix
YSJ= lng;
 %% 数据预处理,数据可能是存储在矩阵或者是EXCEL中的二维数据,衔接为一维的,如果数据是一维数据,此步骤也不会影响数据
[c,l]=size(YSJ);
Y=[];
for i=1:c
    Y=[Y,YSJ(i,:)];
end
[c1,l1]=size(Y);
X=[1:l1];
 %% 绘制噪声信号图像
figure(1);
plot(X,Y);
xlabel('横坐标');
ylabel('纵坐标');
title('原始信号');
 %% 硬阈值处理
lev=3;
xd=wden(Y,'heursure','h','one',lev,'db4');%硬阈值去噪处理后的信号序列
figure(2)
plot(X,xd)
xlabel('横坐标');
ylabel('纵坐标');
title('硬阈值去噪处理')
set(gcf,'Color',[1 1 1])
 %% 软阈值处理
lev=3;
xs=wden(Y,'heursure','s','one',lev,'db4');%软阈值去噪处理后的信号序列
figure(3)
plot(X,xs)
xlabel('横坐标');
ylabel('纵坐标');
title('软阈值去噪处理')
set(gcf,'Color',[1 1 1])
%% 固定阈值后的去噪处理
lev=3;
xz=wden(Y,'sqtwolog','s','sln',lev,'db4');%固定阈值去噪处理后的信号序列
figure(4)
plot(X,xz);
xlabel('横坐标');
ylabel('纵坐标');
title('固定阈值后的去噪处理')
set(gcf,'Color',[1 1 1])
%% 计算信噪比SNR
Psig=sum(Y*Y')/l1;
Pnoi1=sum((Y-xd)*(Y-xd)')/l1;
Pnoi2=sum((Y-xs)*(Y-xs)')/l1;
Pnoi3=sum((Y-xz)*(Y-xz)')/l1;
SNR1=10*log10(Psig/Pnoi1);
SNR2=10*log10(Psig/Pnoi2);
SNR3=10*log10(Psig/Pnoi3);
%% 计算均方根误差RMSE
RMSE1=sqrt(Pnoi1);
RMSE2=sqrt(Pnoi2);
RMSE3=sqrt(Pnoi3);
%% 输出结果
disp('-------------三种阈值设定方式的降噪处理结果---------------'); 
disp(['硬阈值去噪处理的SNR=',num2str(SNR1),',RMSE=',num2str(RMSE1)]);
disp(['软阈值去噪处理的SNR=',num2str(SNR2),',RMSE=',num2str(RMSE2)]);
disp(['固定阈值后的去噪处理SNR=',num2str(SNR3),',RMSE=',num2str(RMSE3)]);
t2=clock;
tim=etime(t2,t1);
disp(['------------------运行耗时',num2str(tim),'秒-------------------'])

运行结果展示:

-------------三种阈值设定方式的降噪处理结果---------------
硬阈值去噪处理的SNR=99.4101,RMSE=0.0012581
软阈值去噪处理的SNR=99.4101,RMSE=0.0012581
固定阈值后的去噪处理SNR=102.9891,RMSE=0.00083323
------------------运行耗时1.806秒-------------------
>> 

在这里插入图片描述

参考:
https://blog.csdn.net/u011776903/article/details/72900438
https://blog.csdn.net/JK198310/article/details/85204396
https://zhuanlan.zhihu.com/p/92345422
https://blog.csdn.net/weixin_45317919/article/details/109295551
https://blog.csdn.net/qq_45955094/article/details/104844614

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐