【动态规划】线性DP
线性DP
1. 线性DP
定义
-
这里的定义只是一个概述,所谓的线性DP是指我们的递推方程是存在一个线性的递推关系。可以是一维线性的、二维线性的、三维线性的、…
-
最长上升子序列模型属于线性
DP
。
2. AcWing上的线性DP题目
AcWing 898. 数字三角形
问题描述
-
问题链接:AcWing 898. 数字三角形
分析
代码
- C++
#include <iostream>
using namespace std;
const int N = 510;
int n;
int f[N][N]; // 最初存储的是三角形中的值
int main() {
cin >> n;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
cin >> f[i][j];
for (int i = n - 1; i; i--)
for (int j = 1; j <= i; j++)
f[i][j] += max(f[i + 1][j], f[i + 1][j + 1]);
cout << f[1][1] << endl;
return 0;
}
AcWing 895. 最长上升子序列
问题描述
-
问题链接:AcWing 895. 最长上升子序列
分析
代码
- C++
// Created by WXX on 2021/2/26 14:50
#include <iostream>
using namespace std;
const int N = 1010; // 多开几个数据,防止数组下标越界
int n; // 输入数据个数
int a[N], f[N]; // a存储读入的数据,f是动态规划数据
// 时间复杂度:O(n^2)
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) {
f[i] = 1;
for (int j = 1; j < i; j++)
if (a[j] < a[i])
f[i] = max(f[i], f[j] + 1);
}
int res = 0; // 最长上升子序列结尾位置不一定是数组的末尾
for (int i = 1; i <= n; i++) res = max(res, f[i]);
cout << res << endl;
return 0;
}
- Java
import java.util.Scanner;
/**
* Created by WXX on 2021/2/26 15:01
* 时间复杂度:O(n^2)
*/
public class Main {
public static final int N = 1010; // 多开几个数据,防止数组下标越界
static int n; // 输入数据个数
static int[] a = new int[N], f = new int[N]; // a存储读入的数据,f是动态规划数据
public static void main(String[] args) {
Scanner sn = new Scanner(System.in);
n = sn.nextInt();
for (int i = 1; i <= n; i++) a[i] = sn.nextInt();
for (int i = 1; i <= n; i++) {
f[i] = 1;
for (int j = 1; j < i; j++)
if (a[j] < a[i])
f[i] = Math.max(f[i], f[j] + 1);
}
int res = 0; // 最长上升子序列结尾位置不一定是数组的末尾
for (int i = 1; i <= n; i++) res = Math.max(res, f[i]);
System.out.println(res);
}
}
AcWing 896. 最长上升子序列 II
问题描述
分析
-
本题和上一题唯一的区别就是输入数组的大小增大了100倍,从最多1000个数据变成了最多100000个数据,如果还采用上述方法,则会TLE(超时),需要采用另外一种做法。
-
我们使用一个数组q来记录额外的信息,从前向后考察输入的数据(存储在a数组中),用q[t]记录考察到当前元素是长度为t的上升子序列结尾的最小值,则根据定义可以推出 q 是一个严格单调上升的子序列,这可以用反证法进行证明。如下图:
知道了q是严格单调递增的,于是我们可以考虑使用二分。
-
对于当前考察的元素 a[i],在q数组中找到小于a[i]的最大的数,假设为q[t],则q[t+1]一定大于等于a[i](否则q[t+1]就是小于a[i]的最大的数),然后将q[t+1]更新为a[i],并在此过程中更新我们的答案。
-
这种做法的时间复杂度是 O ( n ∗ l o g ( n ) ) O(n*log(n)) O(n∗log(n)) 的。
代码
- C++
// Created by WXX on 2021/2/26 14:50
#include <iostream>
using namespace std;
const int N = 100010;
int n;
int a[N], q[N];
// 时间复杂度:O(n^log(n))
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
int res = 0;
q[0] = -2e9; // q[0]设为负无穷,防止数组越界
for (int i = 0; i < n; i++) {
int l = 0, r = res;
while (l < r) {
int mid = l + r + 1 >> 1;
if (q[mid] < a[i]) l = mid;
else r = mid - 1;
}
res = max(res, r + 1);
q[r + 1] = a[i]; // q[r]是小于a[i]的最大的数,则q[r+1]是大于等于a[i]的最小的数
}
cout << res << endl;
return 0;
}
- Java
import java.util.Scanner;
/**
* Created by WXX on 2021/2/26 15:35
* 时间复杂度:O(n^log(n))
*/
public class Main {
public static final int N = 100010;
static int n;
static int[] a = new int[N], q = new int[N];
public static void main(String[] args) {
Scanner sn = new Scanner(System.in);
n = sn.nextInt();
for (int i = 0; i < n; i++) a[i] = sn.nextInt();
int res = 0;
q[0] = Integer.MIN_VALUE; // q[0]设为负无穷,防止数组越界
for (int i = 0; i < n; i++) {
int l = 0, r = res;
while (l < r) {
int mid = l + r + 1 >> 1;
if (q[mid] < a[i]) l = mid;
else r = mid - 1;
}
res = Math.max(res, r + 1);
q[r + 1] = a[i]; // q[r]是小于a[i]的最大的数,则q[r+1]是大于等于a[i]的最小的数
}
System.out.println(res);
}
}
AcWing 897. 最长公共子序列
问题描述
-
问题链接:AcWing 897. 最长公共子序列
分析
代码
- C++
// Created by WXX on 2021/2/26 16:30
#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main() {
scanf("%d%d", &n, &m);
scanf("%s%s", a + 1, b + 1);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
if (a[i] == b[j]) f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
}
printf("%d\n", f[n][m]);
return 0;
}
- Java
import java.util.Scanner;
/**
* Created by WXX on 2021/2/26 16:47
*/
public class Main {
public static final int N = 1010;
static int n, m;
static char[] a, b;
static int[][] f = new int[N][N];
public static void main(String[] args) {
Scanner sn = new Scanner(System.in);
n = sn.nextInt(); m = sn.nextInt();
String s1 = " " + sn.next(), s2 = " " +sn.next(); // 为了让下标从1开始
a = s1.toCharArray(); b = s2.toCharArray();
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
if (a[i] == b[j]) f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + 1);
}
System.out.println(f[n][m]);
}
}
AcWing 902. 最短编辑距离
问题描述
-
问题链接:AcWing 902. 最短编辑距离
分析
代码
- C++
// Created by WXX on 2021/2/27 11:13
#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main() {
scanf("%d%s", &n, a + 1); // 会用到下标i-1,因此字符串从1开始
scanf("%d%s", &m, b + 1);
// 初始化
for (int j = 0; j <= m; j++) f[0][j] = j; // 将空字符串变为b[1~j]需要j步添加操作
for (int i = 0; i <= n; i++) f[i][0] = i; // 将a[1~i]变为空字符串需要i步删除操作
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
if (a[i] == b[j]) f[i][j] = min(f[i][j], f[i - 1][j - 1]);
else f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
}
printf("%d\n", f[n][m]);
return 0;
}
- Java
import java.util.Scanner;
/**
* Created by WXX on 2021/2/27 11:20
*/
public class Main {
public static final int N = 1010;
static int n, m;
static char[] a, b;
static int[][] f = new int[N][N];
public static void main(String[] args) {
Scanner sn = new Scanner(System.in);
n = sn.nextInt();
String s1 = " " + sn.next(); a = s1.toCharArray(); // // 会用到下标i-1,因此字符串从1开始
m = sn.nextInt();
String s2 = " " + sn.next(); b = s2.toCharArray();
// 初始化
for (int j = 0; j <= m; j++) f[0][j] = j; // 将空字符串变为b[1~j]需要j步添加操作
for (int i = 0; i <= n; i++) f[i][0] = i; // 将a[1~i]变为空字符串需要i步删除操作
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
f[i][j] = Math.min(f[i - 1][j] + 1, f[i][j - 1] + 1);
if (a[i] == b[j]) f[i][j] = Math.min(f[i][j], f[i - 1][j - 1]);
else f[i][j] = Math.min(f[i][j], f[i - 1][j - 1] + 1);
}
System.out.println(f[n][m]);
}
}
AcWing 899. 编辑距离
问题描述
-
问题链接:AcWing 899. 编辑距离
分析
- 这一题就是AcWing 902. 最短编辑距离的一个简单应用,只不过需要多次计算编辑距离。
代码
- C++
// Created by WXX on 2021/2/27 11:30
#include <iostream>
#include <cstring>
using namespace std;
const int N = 15, M = 1010;
int n, m;
int f[N][N];
char str[M][N];
int edit_distance(char a[], char b[]) {
int la = strlen(a + 1), lb = strlen(b + 1);
for (int j = 1; j <= lb; j++) f[0][j] = j;
for (int i = 1; i <= la; i++) f[i][0] = i;
for (int i = 1; i <= la; i++)
for (int j = 1; j <= lb; j++) {
f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
if (a[i] == b[j]) f[i][j] = min(f[i][j], f[i - 1][j - 1]);
else f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
}
return f[la][lb];
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++) scanf("%s", str[i] + 1);
while (m--) {
char s[N];
int limit;
scanf("%s%d", s + 1, &limit);
int res = 0;
for (int i = 0; i < n; i++)
if (edit_distance(str[i], s) <= limit)
res++;
printf("%d\n", res);
}
return 0;
}
- Java
import java.util.Scanner;
/**
* Created by WXX on 2021/2/27 11:39
*/
public class Main {
public static final int N = 15, M = 1010;
static int n, m;
static int[][] f = new int[N][N];
static char[][] str = new char[M][];
private static int editDistance(char[] a, char[] b) {
int la = a.length - 1, lb = b.length - 1;
for (int j = 1; j <= lb; j++) f[0][j] = j;
for (int i = 1; i <= la; i++) f[i][0] = i;
for (int i = 1; i <= la; i++)
for (int j = 1; j <= lb; j++) {
f[i][j] = Math.min(f[i - 1][j] + 1, f[i][j - 1] + 1);
if (a[i] == b[j]) f[i][j] = Math.min(f[i][j], f[i - 1][j - 1]);
else f[i][j] = Math.min(f[i][j], f[i - 1][j - 1] + 1);
}
return f[la][lb];
}
public static void main(String[] args) {
Scanner sn = new Scanner(System.in);
n = sn.nextInt(); m = sn.nextInt();
for (int i = 0; i < n; i++) {
String t = " " + sn.next();
str[i] = t.toCharArray();
}
while (m-- != 0) {
char[] s = (" " + sn.next()).toCharArray();
int limit = sn.nextInt();
int res = 0;
for (int i = 0; i < n; i++)
if (editDistance(str[i], s) <= limit)
res++;
System.out.println(res);
}
}
}
更多推荐
所有评论(0)