目标检测总结:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD

转自:七月在线实验室

一、目标检测常见算法

object detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。所以,object detection要解决的问题就是物体在哪里以及是什么的整个流程问题。

然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。

目前学术和工业界出现的目标检测算法分成3类:

  1. 传统的目标检测算法:Cascade + HOG/DPM + Haar/SVM以及上述方法的诸多改进、优化;

  2. 候选区域/框 + 深度学习分类:通过提取候选区域,并对相应区域进行以深度学习方法为主的分类的方案,如:

    R-CNN(Selective Search + CNN + SVM)

    SPP-net(ROI Pooling)

    Fast R-CNN(Selective Search + CNN + ROI)

    Faster R-CNN(RPN + CNN + ROI)

    R-FCN

    等系列方法;

  3. 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC detection;结合DPM的Deformable CNN
    RCNN系列目标检测算法总览

  4. 传统目标检测流程:
    1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比 对图像进行遍历,时间复杂度高)

    2)特征提取(SIFT、HOG等;形态多样性、光照变化多样性、背景多样性使得特征鲁棒性差)

    3)分类器分类(主要有SVM、Adaboost等)

二、传统的目标检测算法

2.1 从图像识别的任务说起

这里有一个图像任务:既要把图中的物体识别出来,又要用方框框出它的位置。
在这里插入图片描述
这个任务本质上就是这两个问题:一:图像识别,二:定位。

图像识别(classification):

输入:图片

输出:物体的类别

评估方法:准确率

在这里插入图片描述
定位(localization):

输入:图片

输出:方框在图片中的位置(x,y,w,h)

评估方法:检测评价函数intersection-over-union(关于什么是IOU,请参看深度学习分类下第55题:https://www.julyedu.com/question/big/kp_id/26/ques_id/2138)
在这里插入图片描述
卷积神经网络CNN已经帮我们完成了图像识别(判定是猫还是狗)的任务了,我们只需要添加一些额外的功能来完成定位任务即可。

定位的问题的解决思路有哪些?

思路一:看做回归问题

看做回归问题,我们需要预测出(x,y,w,h)四个参数的值,从而得出方框的位置。
在这里插入图片描述
步骤1:

*先解决简单问题, 搭一个识别图像的神经网络

*在AlexNet VGG GoogleLenet上fine-tuning一下(关于什么是微调fine-tuning,请参看深度学习分类下第54题:https://www.julyedu.com/question/big/kp_id/26/ques_id/2137)
在这里插入图片描述
步骤2:

*在上述神经网络的尾部展开(也就说CNN前面保持不变,我们对CNN的结尾处作出改进:加了两个头:“分类头”和“回归头”)

*成为classification + regression模式
在这里插入图片描述
步骤3:

*Regression那个部分用欧氏距离损失

*使用SGD训练

步骤4:

*预测阶段把2个头部拼上

*完成不同的功能

这里需要进行两次fine-tuning

第一次在ALexNet上做,第二次将头部改成regression head,前面不变,做一次fine-tuning

Regression的部分加在哪?

有两种处理方法:

•加在最后一个卷积层后面(如VGG)

•加在最后一个全连接层后面(如R-CNN)

regression太难做了,应想方设法转换为classification问题。

regression的训练参数收敛的时间要长得多,所以上面的网络采取了用classification的网络来计算出网络共同部分的连接权值。

思路二:取图像窗口

•还是刚才的classification + regression思路

•咱们取不同的大小的“框”

•让框出现在不同的位置,得出这个框的判定得分

•取得分最高的那个框

左上角的黑框:得分0.5
在这里插入图片描述
右上角的黑框:得分0.75
在这里插入图片描述
左下角的黑框:得分0.6
在这里插入图片描述
右下角的黑框:得分0.8
在这里插入图片描述
根据得分的高低,我们选择了右下角的黑框作为目标位置的预测。

注:有的时候也会选择得分最高的两个框,然后取两框的交集作为最终的位置预测。

疑惑:框要取多大?

取不同的框,依次从左上角扫到右下角。非常粗暴啊。

总结一下思路:

对一张图片,用各种大小的框(遍历整张图片)将图片截取出来,输入到CNN,然后CNN会输出这个框的得分(classification)以及这个框图片对应的x,y,h,w(regression)。

这方法实在太耗时间了,做个优化。

原来网络是这样的:
在这里插入图片描述
优化成这样:把全连接层改为卷积层,这样可以提提速。
在这里插入图片描述

2.2 物体检测(Object Detection)

当图像有很多物体怎么办的?难度可是一下暴增啊。那任务就变成了:多物体识别+定位多个物体。那把这个任务看做分类问题?
在这里插入图片描述
看成分类问题有何不妥?

•你需要找很多位置, 给很多个不同大小的框

•你还需要对框内的图像分类

•当然, 如果你的GPU很强大, 恩, 那加油做吧…

所以,传统目标检测的主要问题是:

1)基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余

2)手工设计的特征对于多样性的变化没有很好的鲁棒性

看做classification, 有没有办法优化下?我可不想试那么多框那么多位置啊!

三、候选区域/窗 + 深度学习分类

3.1 R-CNN横空出世

有人想到一个好方法:预先找出图中目标可能出现的位置,即候选区域(Region Proposal)。利用图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千甚至几百)的情况下保持较高的召回率(Recall)。

所以,问题就转变成找出可能含有物体的区域/框(也就是候选区域/框,比如选2000个候选框),这些框之间是可以互相重叠互相包含的,这样我们就可以避免暴力枚举所有框了。

大牛们发明好多选定候选框Region Proposal的方法,比如Selective Search和EdgeBoxes。那提取候选框用到的算法“选择性搜索”到底怎么选出这些候选框的呢?具体可以看一下PAMI2015的“What makes for effective detection proposals?”

以下是各种选定候选框的方法的性能对比。
在这里插入图片描述
有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。

对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达 26.2%。此后,卷积神经网络CNN占据了图像分类任务的绝对统治地位。

2014年,RBG(Ross B. Girshick)使用Region Proposal + CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。
在这里插入图片描述
R-CNN的简要步骤如下

(1) 输入测试图像

(2) 利用选择性搜索Selective Search算法在图像中从下到上提取2000个左右的可能包含物体的候选区域Region Proposal

(3) 因为取出的区域大小各自不同,所以需要将每个Region Proposal缩放(warp)成统一的227x227的大小并输入到CNN,将CNN的fc7层的输出作为特征

(4) 将每个Region Proposal提取到的CNN特征输入到SVM进行分类

具体步骤则如下

步骤一:训练(或者下载)一个分类模型(比如AlexNet)

步骤二:对该模型做fine-tuning

•将分类数从1000改为21,比如20个物体类别 + 1个背景

•去掉最后一个全连接层

步骤三:特征提取

•提取图像的所有候选框(选择性搜索Selective Search)

•对于每一个区域:修正区域大小以适合CNN的输入,做一次前向运算,将第五个池化层的输出(就是对候选框提取到的特征)存到硬盘

步骤四:训练一个SVM分类器(二分类)来判断这个候选框里物体的类别

每个类别对应一个SVM,判断是不是属于这个类别,是就是positive,反之nagative。

比如下图,就是狗分类的SVM
在这里插入图片描述
步骤五:使用回归器精细修正候选框位置:对于每一个类,训练一个线性回归模型去判定这个框是否框得完美。
在这里插入图片描述
细心的同学可能看出来了问题,R-CNN虽然不再像传统方法那样穷举,但R-CNN流程的第一步中对原始图片通过Selective Search提取的候选框region proposal多达2000个左右,而这2000个候选框每个框都需要进行CNN提特征+SVM分类,计算量很大,导致R-CNN检测速度很慢,一张图都需要47s。
在这里插入图片描述
有没有方法提速呢?答案是有的,这2000个region proposal不都是图像的一部分吗,那么我们完全可以对图像提一次卷积层特征,然后只需要将region proposal在原图的位置映射到卷积层特征图上,这样对于一张图像我们只需要提一次卷积层特征,然后将每个region proposal的卷积层特征输入到全连接层做后续操作。

但现在的问题是每个region proposal的尺度不一样,而全连接层输入必须是固定的长度,所以直接这样输入全连接层肯定是不行的。SPP Net恰好可以解决这个问题。

3.2 SPP Net

SPP:Spatial Pyramid Pooling(空间金字塔池化)

SPP-Net是出自2015年发表在IEEE上的论文-《Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition》。

众所周知,CNN一般都含有卷积部分和全连接部分,其中,卷积层不需要固定尺寸的图像,而全连接层是需要固定大小的输入。
在这里插入图片描述
所以当全连接层面对各种尺寸的输入数据时,就需要对输入数据进行crop(crop就是从一个大图扣出网络输入大小的patch,比如227×227),或warp(把一个边界框bounding box的内容resize成227×227)等一系列操作以统一图片的尺寸大小,比如224224(ImageNet)、3232(LenNet)、96*96等。

所以才如你在上文中看到的,在R-CNN中,“因为取出的区域大小各自不同,所以需要将每个Region Proposal缩放(warp)成统一的227x227的大小并输入到CNN”。

但warp/crop这种预处理,导致的问题要么被拉伸变形、要么物体不全,限制了识别精确度。没太明白?说句人话就是,一张16:9比例的图片你硬是要Resize成1:1的图片,你说图片失真不?

SPP Net的作者Kaiming He等人逆向思考,既然由于全连接FC层的存在,普通的CNN需要通过固定输入图片的大小来使得全连接层的输入固定。那借鉴卷积层可以适应任何尺寸,为何不能在卷积层的最后加入某种结构,使得后面全连接层得到的输入变成固定的呢?

这个“化腐朽为神奇”的结构就是spatial pyramid pooling layer。

下图便是R-CNN和SPP Net检测流程的比较:
它的特点有两个:

1.结合空间金字塔方法实现CNNs的多尺度输入。

SPP Net的第一个贡献就是在最后一个卷积层后,接入了金字塔池化层,保证传到下一层全连接层的输入固定。

换句话说,在普通的CNN机构中,输入图像的尺寸往往是固定的(比如224*224像素),输出则是一个固定维数的向量。SPP Net在普通的CNN结构中加入了ROI池化层(ROI Pooling),使得网络的输入图像可以是任意尺寸的,输出则不变,同样是一个固定维数的向量。

简言之,CNN原本只能固定输入、固定输出,CNN加上SSP之后,便能任意输入、固定输出。神奇吧?

ROI池化层一般跟在卷积层后面,此时网络的输入可以是任意尺度的,在SPP layer中每一个pooling的filter会根据输入调整大小,而SPP的输出则是固定维数的向量,然后给到全连接FC层。
在这里插入图片描述
2.只对原图提取一次卷积特征

在R-CNN中,每个候选框先resize到统一大小,然后分别作为CNN的输入,这样是很低效的。

而SPP Net根据这个缺点做了优化:只对原图进行一次卷积计算,便得到整张图的卷积特征feature map,然后找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层,完成特征提取工作。

如此这般,R-CNN要对每个区域计算卷积,而SPPNet只需要计算一次卷积,从而节省了大量的计算时间,比R-CNN有一百倍左右的提速。
在这里插入图片描述

3.3 Fast R-CNN

SPP Net真是个好方法,R-CNN的进阶版Fast R-CNN就是在R-CNN的基础上采纳了SPP Net方法,对R-CNN作了改进,使得性能进一步提高。
R-CNN与Fast R-CNN的区别有哪些呢?

先说R-CNN的缺点:即使使用了Selective Search等预处理步骤来提取潜在的边界框bounding box作为输入,但是R-CNN仍会有严重的速度瓶颈,原因也很明显,就是计算机对所有region进行特征提取时会有重复计算,Fast-RCNN正是为了解决这个问题诞生的。
在这里插入图片描述
与R-CNN框架图对比,可以发现主要有两处不同:一是最后一个卷积层后加了一个ROI pooling layer,二是损失函数使用了多任务损失函数(multi-task loss),将边框回归Bounding Box Regression直接加入到CNN网络中训练(关于什么是边框回归,请参看深度学习分类下第56题:https://www.julyedu.com/question/big/kp_id/26/ques_id/2139)。

(1) ROI pooling layer实际上是SPP-NET的一个精简版,SPP-NET对每个proposal使用了不同大小的金字塔映射,而ROI pooling layer只需要下采样到一个7x7的特征图。对于VGG16网络conv5_3有512个特征图,这样所有region proposal对应了一个77512维度的特征向量作为全连接层的输入。

换言之,这个网络层可以把不同大小的输入映射到一个固定尺度的特征向量,而我们知道,conv、pooling、relu等操作都不需要固定size的输入,因此,在原始图片上执行这些操作后,虽然输入图片size不同导致得到的feature map尺寸也不同,不能直接接到一个全连接层进行分类,但是可以加入这个神奇的ROI Pooling层,对每个region都提取一个固定维度的特征表示,再通过正常的softmax进行类型识别。

(2) R-CNN训练过程分为了三个阶段,而Fast R-CNN直接使用softmax替代SVM分类,同时利用多任务损失函数边框回归也加入到了网络中,这样整个的训练过程是端到端的(除去region proposal提取阶段)。

也就是说,之前R-CNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做box regression,而在Fast R-CNN中,作者巧妙的把box regression放进了神经网络内部,与region分类和并成为了一个multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。
在这里插入图片描述
所以,Fast-RCNN很重要的一个贡献是成功的让人们看到了Region Proposal + CNN这一框架实时检测的希望,原来多类检测真的可以在保证准确率的同时提升处理速度,也为后来的Faster R-CNN做下了铺垫。
画一画重点:

R-CNN有一些相当大的缺点(把这些缺点都改掉了,就成了Fast R-CNN)。

大缺点:由于每一个候选框都要独自经过CNN,这使得花费的时间非常多。

解决:共享卷积层,现在不是每一个候选框都当做输入进入CNN了,而是输入一张完整的图片,在第五个卷积层再得到每个候选框的特征

原来的方法:许多候选框(比如两千个)–>CNN–>得到每个候选框的特征–>分类+回归

现在的方法:一张完整图片–>CNN–>得到每张候选框的特征–>分类+回归

所以容易看见,Fast R-CNN相对于R-CNN的提速原因就在于:不过不像R-CNN把每个候选区域给深度网络提特征,而是整张图提一次特征,再把候选框映射到conv5上,而SPP只需要计算一次特征,剩下的只需要在conv5层上操作就可以了。

在性能上提升也是相当明显的:
在这里插入图片描述

3.4 Faster R-CNN

Fast R-CNN存在的问题:存在瓶颈:选择性搜索,找出所有的候选框,这个也非常耗时。那我们能不能找出一个更加高效的方法来求出这些候选框呢?

解决:加入一个提取边缘的神经网络,也就说找到候选框的工作也交给神经网络来做了。

所以,rgbd在Fast R-CNN中引入Region Proposal Network(RPN)替代Selective Search,同时引入anchor box应对目标形状的变化问题(anchor就是位置和大小固定的box,可以理解成事先设置好的固定的proposal)。

具体做法:

•将RPN放在最后一个卷积层的后面

•RPN直接训练得到候选区域
在这里插入图片描述
RPN简介:

•在feature map上滑动窗口

•建一个神经网络用于物体分类+框位置的回归

•滑动窗口的位置提供了物体的大体位置信息

•框的回归提供了框更精确的位置
在这里插入图片描述
一种网络,四个损失函数;

•RPN calssification(anchor good.bad)

•RPN regression(anchor->propoasal)

•Fast R-CNN classification(over classes)

•Fast R-CNN regression(proposal ->box)
在这里插入图片描述
速度对比
在这里插入图片描述
Faster R-CNN的主要贡献就是设计了提取候选区域的网络RPN,代替了费时的选择性搜索Selective Search,使得检测速度大幅提高。

最后总结一下各大算法的步骤:

RCNN

1.在图像中确定约1000-2000个候选框 (使用选择性搜索Selective Search)

2.每个候选框内图像块缩放至相同大小,并输入到CNN内进行特征提取

3.对候选框中提取出的特征,使用分类器判别是否属于一个特定类

4.对于属于某一类别的候选框,用回归器进一步调整其位置

Fast R-CNN

1.在图像中确定约1000-2000个候选框 (使用选择性搜索)

2.对整张图片输进CNN,得到feature map

3.找到每个候选框在feature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层

4.对候选框中提取出的特征,使用分类器判别是否属于一个特定类

5.对于属于某一类别的候选框,用回归器进一步调整其位置

Faster R-CNN

1.对整张图片输进CNN,得到feature map

2.卷积特征输入到RPN,得到候选框的特征信息

3.对候选框中提取出的特征,使用分类器判别是否属于一个特定类

4.对于属于某一类别的候选框,用回归器进一步调整其位置

简言之,即如本文开头所列

R-CNN(Selective Search + CNN + SVM)

SPP-net(ROI Pooling)

Fast R-CNN(Selective Search + CNN + ROI)

Faster R-CNN(RPN + CNN + ROI)

总的来说,从R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN一路走来,基于深度学习目标检测的流程变得越来越精简,精度越来越高,速度也越来越快。可以说基于region proposal的R-CNN系列目标检测方法是当前目标检测技术领域最主要的一个分支。

四、基于深度学习的回归方法

4.1 YOLO1 (CVPR2016, oral)

(You Only Look Once: Unified, Real-Time Object Detection)

Faster R-CNN的方法目前是主流的目标检测方法,但是速度上并不能满足实时的要求。YOLO一类的方法慢慢显现出其重要性,这类方法使用了回归的思想,利用整张图作为网络的输入,直接在图像的多个位置上回归出这个位置的目标边框,以及目标所属的类别。

我们直接看上面YOLO的目标检测的流程图:
在这里插入图片描述
(1) 给个一个输入图像,首先将图像划分成7*7的网格

(2) 对于每个网格,我们都预测2个边框(包括每个边框是目标的置信度以及每个边框区域在多个类别上的概率)

(3) 根据上一步可以预测出772个目标窗口,然后根据阈值去除可能性比较低的目标窗口,最后NMS去除冗余窗口即可(关于什么是非极大值抑制NMS,请参看深度学习分类下第58题:https://www.julyedu.com/question/big/kp_id/26/ques_id/2141)。

可以看到整个过程非常简单,不再需要中间的region proposal找目标,直接回归便完成了位置和类别的判定。
在这里插入图片描述
小结:YOLO将目标检测任务转换成一个回归问题,大大加快了检测的速度,使得YOLO可以每秒处理45张图像。而且由于每个网络预测目标窗口时使用的是全图信息,使得false positive比例大幅降低(充分的上下文信息)。

但是YOLO也存在问题:没有了Region Proposal机制,只使用7*7的网格回归会使得目标不能非常精准的定位,这也导致了YOLO的检测精度并不是很高。

4.2 SSD

(SSD: Single Shot multibox Detector)

上面分析了YOLO存在的问题,使用整图特征在7*7的粗糙网格内回归对目标的定位并不是很精准。那是不是可以结合region proposal的思想实现精准一些的定位?SSD结合YOLO的回归思想以及Faster R-CNN的anchor机制做到了这点。
在这里插入图片描述
上图是SSD的一个框架图,首先SSD获取目标位置和类别的方法跟YOLO一样,都是使用回归,但是YOLO预测某个位置使用的是全图的特征,SSD预测某个位置使用的是这个位置周围的特征(感觉更合理一些)。

那么如何建立某个位置和其特征的对应关系呢?可能你已经想到了,使用Faster R-CNN的anchor机制。如SSD的框架图所示,假如某一层特征图(图b)大小是88,那么就使用33的滑窗提取每个位置的特征,然后这个特征回归得到目标的坐标信息和类别信息(图c)。

不同于Faster R-CNN,这个anchor是在多个feature map上,这样可以利用多层的特征并且自然的达到多尺度(不同层的feature map 3*3滑窗感受野不同)。

小结:SSD结合了YOLO中的回归思想和Faster R-CNN中的anchor机制,使用全图各个位置的多尺度区域特征进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster R-CNN一样比较精准。SSD在VOC2007上mAP可以达到72.1%,速度在GPU上达到58帧每秒。

4.3 YOLO2

YOLO2主要有两个大方面的改进:

  1. 使用一系列的方法对YOLO进行了改进,在保持原有速度的同时提升精度得到YOLOv2。
  2. 提出了一种目标分类与检测的联合训练方法,同时在COCO和ImageNet数据集中进行训练得到YOLO9000,实现9000多种物体的实时检测。提出了一种目标分类与检测的联合训练方法,同时在COCO和ImageNet数据集中进行训练得到YOLO9000,实现9000多种物体的实时检测。

更好(Better)

batch normalization
解决办法之一是对数据都要做一个归一化预处理。YOLOv2网络通过在每一个卷积层后添加batch normalization,极大的改善了收敛速度同时减少了对其它regularization方法的依赖(舍弃了dropout优化后依然没有过拟合),使得mAP获得了2%的提升。

High Resolution Classifier
所有state-of-the-art的检测方法基本上都会使用ImageNet预训练过的模型(classifier)来提取特征,例如AlexNet输入图片会被resize到不足256 * 256,这导致分辨率不够高,给检测带来困难。所以YOLO(v1)先以分辨率224224训练分类网络,然后需要增加分辨率到448448,这样做不仅切换为检测算法也改变了分辨率。所以作者想能不能在预训练的时候就把分辨率提高了,训练的时候只是由分类算法切换为检测算法。

YOLOv2首先修改预训练分类网络的分辨率为448*448,在ImageNet数据集上训练10轮(10 epochs)。这个过程让网络有足够的时间调整filter去适应高分辨率的输入。然后fine tune为检测网络。mAP获得了4%的提升。

Convolutional With Anchor Boxes.
YOLO(v1)使用全连接层数据进行bounding box预测(要把14701的全链接层reshape为77*30的最终特征),这会丢失较多的空间信息定位不准。YOLOv2借鉴了Faster R-CNN中的anchor思想: 简单理解为卷积特征图上进行滑窗采样,每个中心预测9种不同大小和比例的建议框。由于都是卷积不需要reshape,很好的保留的空间信息,最终特征图的每个特征点和原图的每个cell一一对应。而且用预测相对偏移(offset)取代直接预测坐标简化了问题,方便网络学习。
在这里插入图片描述
总的来说就是移除全连接层(以获得更多空间信息)使用 anchor boxes 取预测 bounding boxes。具体做法如下:

  1. 去掉最后的池化层确保输出的卷积特征图有更高的分辨率。
  2. 缩减网络,让图片输入分辨率为416 * 416,目的是让后面产生的卷积特征图宽高都为奇数,这样就可以产生一个center cell。因为作者观察到,大物体通常占据了图像的中间位置,可以只用一个中心的cell来预测这些物体的位置,否则就要用中间的4个cell来进行预测,这个技巧可稍稍提升效率。
  3. 使用卷积层降采样(factor 为32),使得输入卷积网络的416 * 416图片最终得到13 * 13的卷积特征图(416/32=13)
  4. 把预测类别的机制从空间位置(cell)中解耦,由anchor box同时预测类别和坐标。因为YOLO是由每个cell来负责预测类别,每个cell对应的2个bounding box 负责预测坐标(回想YOLO中 最后输出7730的特征,每个cell对应1130,前10个主要是2个bounding box用来预测坐标,后20个表示该cell在假设包含物体的条件下属于20个类别的概率,具体请参考 图解YOLO 的图示) 。YOLOv2中,不再让类别的预测与每个cell(空间位置)绑定一起,而是让全部放到anchor box中。下面是特征维度示意图(仅作示意并非完全正确)
    在这里插入图片描述

加入了anchor boxes后,可以预料到的结果是召回率上升,准确率下降。我们来计算一下,假设每个cell预测9个建议框,那么总共会预测13 * 13 * 9 = 1521个boxes,而之前的网络仅仅预测7 * 7 * 2 = 98个boxes。具体数据为:没有anchor boxes,模型recall为81%,mAP为69.5%;加入anchor boxes,模型recall为88%,mAP为69.2%。这样看来,准确率只有小幅度的下降,而召回率则提升了7%,说明可以通过进一步的工作来加强准确率,的确有改进空间。

Dimension Clusters(维度聚类)
使用anchor时,作者发现Faster-RCNN中anchor boxes的个数和宽高维度往往是手动精选的先验框(hand-picked priors),设想能否一开始就选择了更好的、更有代表性的先验boxes维度,那么网络就应该更容易学到准确的预测位置。解决办法就是统计学习中的K-means聚类方法,通过对数据集中的ground true box做聚类,找到ground true box的统计规律。以聚类个数k为anchor boxs个数,以k个聚类中心box的宽高维度为anchor box的维度。
在这里插入图片描述
Direct location prediction
使用anchor boxes的另一个问题是模型不稳定,尤其是在早期迭代的时候。大部分的不稳定现象出现在预测box的(x,y)坐标时。

在区域建议网络(RPN)中会预测坐标就是预测tx,ty。对应的中心点(x,y)按如公式计算: x=(t_xw_a)+x_a, ; y=(t_yh_a)+y_a

可见预测tx=1就会把box向右移动anchor box的宽度,预测tx=-1就会把box向左移动相同的距离。

最终,网络在特征图(13 *13 )的每个cell上预测5个bounding boxes,每一个bounding box预测5个坐标值:tx,ty,tw,th,to。如果这个cell距离图像左上角的边距为(cx,cy)以及该cell对应的box维度(bounding box prior)的长和宽分别为(pw,ph),那么对应的box为:
在这里插入图片描述
在这里插入图片描述
约束了位置预测的范围,参数就更容易学习,模型就更稳定。使用Dimension Clusters和Direct location prediction这两项anchor boxes改进方法,mAP获得了5%的提升。

Fine-Grained Features(细粒度特征)
修改后的网络最终在13 * 13的特征图上进行预测,虽然这足以胜任大尺度物体的检测,如果用上细粒度特征的话可能对小尺度的物体检测有帮助。Faser R-CNN和SSD都在不同层次的特征图上产生区域建议以获得多尺度的适应性。YOLOv2使用了一种不同的方法,简单添加一个 passthrough layer,把浅层特征图(分辨率为26 * 26)连接到深层特征图。

passthroughlaye把高低分辨率的特征图做连结,叠加相邻特征到不同通道(而非空间位置)
,类似于Resnet中的identity mappings。这个方法把26 * 26 * 512的特征图叠加成13 * 13 * 2048的特征图,与原生的深层特征图相连接。

YOLOv2的检测器使用的就是经过扩展后的的特征图,它可以使用细粒度特征,使得模型的性能获得了1%的提升。

Multi-ScaleTraining
原始YOLO网络使用固定的448 * 448的图片作为输入,加入anchor boxes后输入变成416 * 416,由于网络只用到了卷积层和池化层,就可以进行动态调整(检测任意大小图片)。为了让YOLOv2对不同尺寸图片的具有鲁棒性,在训练的时候也考虑了这一点。

不同于固定网络输入图片尺寸的方法,每经过10批训练(10 batches)就会随机选择新的图片尺寸。网络使用的降采样参数为32,于是使用32的倍数{320,352,…,608},最小的尺寸为320 * 320,最大的尺寸为608 * 608。 调整网络到相应维度然后继续进行训练。

更快速(Faster)

大多数检测网络依赖于VGG-16作为特征提取网络,VGG-16是一个强大而准确的分类网络,但是确过于复杂。224 * 224的图片进行一次前向传播,其卷积层就需要多达306.9亿次浮点数运算。

YOLO使用的是基于Googlenet的自定制网络,比VGG-16更快,一次前向传播仅需85.2亿次运算,不过它的精度要略低于VGG-16。224 * 224图片取 single-crop, top-5 accuracy,YOLO的定制网络得到88%(VGG-16得到90%)。

Darknet-19
YOLOv2使用了一个新的分类网络作为特征提取部分,参考了前人的工作经验。类似于VGG,网络使用了较多的3 * 3卷积核,在每一次池化操作后把通道数翻倍。借鉴了network in network的思想,网络使用了全局平均池化(global average pooling)做预测,把1 * 1的卷积核置于3 * 3的卷积核之间,用来压缩特征。使用batch normalization稳定模型训练,加速收敛,正则化模型。

最终得出的基础模型就是Darknet-19,包含19个卷积层、5个最大值池化层(max pooling layers )。Darknet-19处理一张照片需要55.8亿次运算,imagenet的top-1准确率为72.9%,top-5准确率为91.2%。
在这里插入图片描述
更强大(Stronger)

作者提出了一种在分类数据集和检测数据集上联合训练的机制。使用检测数据集的图片去学习检测相关的信息,例如bounding box 坐标预测,是否包含物体以及属于各个物体的概率。使用仅有类别标签的分类数据集图片去扩展可以检测的种类。

Hierarchical classification(层次式分类)
ImageNet的标签参考WordNet(一种结构化概念及概念之间关系的语言数据库)。例如:
在这里插入图片描述
创建层次树的步骤是:

  1. 遍历ImageNet的所有视觉名词
  2. 对每一个名词,在WordNet上找到从它所在位置到根节点(“physical object”)的路径。 许多同义词集只有一条路径。所以先把这些路径加入层次树结构。
  3. 然后迭代检查剩下的名词,得到路径,逐个加入到层次树。路径选择办法是:如果一个名词有两条路径到根节点,其中一条需要添加3个边到层次树,另一条仅需添加一条边,那么就选择添加边数少的那条路径。然后迭代检查剩下的名词,得到路径,逐个加入到层次树。路径选择办法是:如果一个名词有两条路径到根节点,其中一条需要添加3个边到层次树,另一条仅需添加一条边,那么就选择添加边数少的那条路径。

Dataset combination with WordTree
可以使用WordTree把多个数据集整合在一起。只需要把数据集中的类别映射到树结构中的同义词集合(synsets)。使用WordTree整合ImageNet和COCO的标签如下图:
在这里插入图片描述
joint classification and detection(联合训练分类和检测)
使用WordTree整合了数据集之后就可以在数据集(分类-检测数据)上训练联合模型。我们想要训练一个检测类别很大的检测器所以使用COCO检测数据集和全部ImageNet的前9000类创造一个联合数据集。为了评估我们使用的方法,也从ImageNet detection challenge 中向整合数据集添加一些还没有存在于整合数据集的类别。相应的WordTree有9418个类别。由于ImageNet是一个非常大的数据集,所以通过oversampling COCO数据集来保持平衡,使ImageNet:COCO = 4:1。

采用这种联合训练,YOLO9000从COCO检测数据集中学习如何在图片中寻找物体,从ImageNet数据集中学习更广泛的物体分类。

小结:使用一系列的方法对YOLO进行了改进,在保持原有速度的同时提升精度得到YOLOv2。 提出了一种目标分类与检测的联合训练方法,同时在COCO和ImageNet数据集中进行训练得到YOLO9000,实现9000多种物体的实时检测。提出了一种目标分类与检测的联合训练方法,同时在COCO和ImageNet数据集中进行训练得到YOLO9000,实现9000多种物体的实时检测。

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐