Pytorch学习笔记(四):nn.MaxPool2d()函数详解
·
相关文章
Pytorch学习笔记(一):torch.cat()模块的详解
Pytorch学习笔记(二):nn.Conv2d()函数详解Pytorch学习笔记(三):nn.BatchNorm2d()函数详解
Pytorch学习笔记(四):nn.MaxPool2d()函数详解
Pytorch学习笔记(五):nn.AdaptiveAvgPool2d()函数详解
Pytorch学习笔记(六):view()和nn.Linear()函数详解
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
文章目录
1.函数语法格式和作用
作用:
对邻域内特征点取最大
减小卷积层参数误差造成估计均值的偏移的误差,更多的保留纹理信息。
MaxPool2d(kernel_size, stride=None, padding=0,
dilation=1, return_indices=False, ceil_mode=False)
2.参数解释
- kernel_size(int or tuple) - max pooling的窗口大小
- stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
- padding(int or tuple, optional) - 输入的每一条边补充0的层数
- dilation(int or tuple, optional) – 一个控制窗口中元素步幅的参数
- return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助
- ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
3.具体代码
>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool2d((3, 2), stride=(2, 1))
>>> input = autograd.Variable(torch.randn(20, 16, 50, 32))
>>> output = m(input)
更多推荐
已为社区贡献10条内容
所有评论(0)