矩阵分析系统学习笔记

本系列所有文章来自东北大学韩志涛老师的矩阵分析课程学习笔记,系列如下:
矩阵分析 (一) 线性空间和线性变换
矩阵分析 (二) 内积空间
矩阵分析 (三) 矩阵的标准形
矩阵分析 (四)向量和矩阵的范数
矩阵分析 (五) 矩阵的分解
矩阵分析 (六) 矩阵的函数
矩阵分析 (七) 矩阵特征值的估计
矩阵分析 (八) 矩阵的直积

  矩阵的直积(Kronecher 积)是一种重要的矩阵乘积,它在矩阵理论研究中起着重要的作用,是一种基本的数学工具。本文介绍矩阵直积的基本性质,并利用矩阵的直积求解线性矩阵方程组矩阵微分方程组

直积的定义和性质

  • 定义8.1:设矩阵:

A = ( a i j ) m × n , B = ( b i j ) p × q A=(a_{ij})_{m \times n},B=(b_{ij})_{p \times q} A=(aij)m×nB=(bij)p×q

  称如下的分块矩阵:

A ⊗ B = ( a 11 B a 12 B ⋯ a 1 n B ⋮ ⋮ ⋮ a m 1 B a m 2 B ⋯ a m n B ) A \otimes B =\left(\begin{array}{cccc} {a_{11} B} & {a_{12} B} & {\cdots} & {a_{1 n} B} \\ {\vdots} & {\vdots} & {} & {\vdots} \\ {a_{m 1} B} & {a_{m 2} B} & {\cdots} & {a_{m n} B} \end{array}\right) AB= a11Bam1Ba12Bam2Ba1nBamnB

  为 A A A B B B的直积或者Kronecher积。

  可见 A ⊗ B A \otimes B AB m p × n q mp \times nq mp×nq矩阵。

矩阵的直积有下列性质

  • 1、设 K K K为常数,则:
    k ( A ⊗ B ) = ( k A ) ⊗ B = A ⊗ ( k B ) k(A\otimes B) = (kA) \otimes B=A \otimes (kB) k(AB)=(kA)B=A(kB)

  • 2、设 A 1 , A 2 A_{1},A_{2} A1A2同阶矩阵,则:
    ( A 1 + A 2 ) ⊗ B = A 1 ⊗ B + A 2 ⊗ B (A_{1}+A_{2}) \otimes B = A_{1} \otimes B+A_{2} \otimes B (A1+A2)B=A1B+A2B
    B ⊗ ( A 1 + A 2 ) = B ⊗ A 1 + B ⊗ A 2 B \otimes (A_{1}+A_{2}) = B \otimes A_{1}+B \otimes A_{2} B(A1+A2)=BA1+BA2

  • 3、:
    ( A ⊗ B ) T = A T ⊗ B T (A \otimes B)^{T}=A^{T} \otimes B^{T} (AB)T=ATBT

  • 4、:
    ( A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C ) (A \otimes B) \otimes C = A \otimes (B \otimes C) (AB)C=A(BC)

  • 5、设: A = ( a i j ) m × n A=(a_{ij})_{m \times n} A=(aij)m×n B = ( b i j ) p × q B=(b_{ij})_{p\times q} B=(bij)p×q C = ( c i j ) n × s C=(c_{ij})_{n \times s} C=(cij)n×s D = ( d i j ) q × t D=(d_{ij})_{q \times t} D=(dij)q×t,则:
    ( A ⊗ B ) ( C ⊗ D ) = ( A C ) ⊗ ( B D ) (A \otimes B)(C \otimes D) = (AC) \otimes (BD) (AB)(CD)=(AC)(BD)

  • 6、设:
    A ∈ C n × n , B ∈ C n × n A \in C^{n \times n},B \in C^{n\times n} ACn×nBCn×n

  都可逆,则 A ⊗ B A \otimes B AB可逆,且:

( A ⊗ B ) − 1 = A − 1 ⊗ B − 1 (A \otimes B)^{-1} = A^{-1} \otimes B^{-1} (AB)1=A1B1

  • 7、设 A ∈ C n × n A \in C^{n \times n} ACn×n,设 B ∈ C n × n B \in C^{n \times n} BCn×n都是酉矩阵,则 A × B A \times B A×B也是酉矩阵

  • 8、设 A ∈ C m × m A \in C^{m \times m} ACm×m的全体特征值 λ 1 \lambda_{1} λ1 λ 2 \lambda_{2} λ2 ⋯ \cdots λ m \lambda_{m} λm B ∈ C n × n B \in C^{n \times n} BCn×n的全体特征值 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 ⋯ \cdots μ n \mu_{n} μn,则 A ⊗ B A \otimes B AB全体特征值是:
    λ i μ i \lambda_{i}\mu_{i} λiμi

  • 9、设 A ∈ C m × m A \in C^{m \times m} ACm×m B ∈ C n × n B \in C^{n \times n} BCn×n,则 ∣ A ⊗ B ∣ = ∣ A ∣ n ⋅ ∣ B ∣ m |A \otimes B| = |A|^{n} ·|B|^{m} AB=AnBm

  • 10、设 A ∈ C m × m A \in C^{m \times m} ACm×m的特征值是 λ 1 \lambda_{1} λ1 λ 2 \lambda_{2} λ2 ⋯ \cdots λ m \lambda_{m} λm B ∈ C n × n B \in C^{n \times n} BCn×n的特征值是 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 ⋯ \cdots μ n \mu_{n} μn则:
    A ⊗ E n + E m ⊗ B A \otimes E_{n} + E_{m} \otimes B AEn+EmB

  的特征值是:

λ i + μ j \lambda_{i} + \mu_{j} λi+μj

  • 11、设 A ∈ C m × m A \in C^{m \times m} ACm×m的特征值是 λ 1 \lambda_{1} λ1 λ 2 \lambda_{2} λ2 ⋯ \cdots λ m \lambda_{m} λm B ∈ C n × n B \in C^{n \times n} BCn×n的特征值是 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 ⋯ \cdots μ n \mu_{n} μn,则 A ⊗ E n + E m ⊗ B T A \otimes E_{n} + E_{m} \otimes B^{T} AEn+EmBT的特征值也是 λ i \lambda_{i} λi+ μ j \mu_{j} μj

  • x x x A ∈ C m × m A\in C^{m \times m} ACm×m特征向量 y y y B ∈ C n × n B \in C^{n \times n} BCn×n特征向量,则 x ⊗ y x \otimes y xy A ⊗ B A \otimes B AB特征向量

  • A ∈ C n × n A \in C^{n \times n} ACn×n,则:

e E ⊗ A = E ⊗ e A , e A ⊗ E = e A ⊗ E e^{E \otimes A} = E \otimes e^{A},e^{A \otimes E} = e^{A} \otimes E eEA=EeAeAE=eAE

  • A ∈ C m × m A \in C^{m \times m} ACm×m B ∈ C n × n B \in C^{n \times n} BCn×n则:
    e A ⊗ E n + E m ⊗ B = e A ⊗ e B e^{A \otimes E_{n} + E_{m} \otimes B} = e^{A} \otimes e^{B} eAEn+EmB=eAeB

直积的应用

  本节讨论直积在解线性矩阵方程组中的应用。

拉直

  • 定义8.2:设矩阵 A = ( a i j ) m × n A=(a_{ij})_{m \times n} A=(aij)m×n,称 m n mn mn维列向量:

→ A = ( a 11 ⋯ a 1 n , a 21 ⋯ a 2 n , ⋯ , a m 1 ⋯ a m n ) T \underset{A}{\rightarrow} = (a_{11} \cdots a_{1n},a_{21} \cdots a_{2n},\cdots ,a_{m1} \cdots a_{m n})^{T} A=(a11a1na21a2nam1amn)T

  为 A A A的拉直。

拉直具有下面的性质:

  1. A , B ∈ C m × n A,B \in C^{m \times n} ABCm×n k k k l l l为常数,则:

k A + l B → = k A → + l B → \overrightarrow{k A+l B}=k \overrightarrow{ A}+ l \overrightarrow{ B} kA+lB =kA +lB

  1. A = ( a i j ( t ) ) m × n A=(a_{ij}(t))_{m \times n} A=(aij(t))m×n则:

d A → d t = d A → d t \frac{\overrightarrow{dA}}{dt}=\frac{d \overrightarrow{A}}{dt} dtdA =dtdA

  • 定理8.1 设:

A ∈ C m × n , B ∈ C p × q , X ∈ C n × p A \in C^{m \times n},B \in C^{p \times q},X \in C^{n \times p} ACm×nBCp×qXCn×p

  则:

A X B → = ( A ⊗ E n ) ( E m ⊗ B T ) X → \overrightarrow{AXB} = (A \otimes E_{n})(E_{m} \otimes B^{T}) \overrightarrow{X} AXB =(AEn)(EmBT)X

= ( A ⊗ B T ) X → = (A \otimes B^{T}) \overrightarrow{X} =(ABT)X

A X + B X → = ( A ⊗ E n + E m ⊗ B T ) X → \overrightarrow{AX+BX} = (A \otimes E_{n} + E_{m} \otimes B^{T}) \overrightarrow{X} AX+BX =(AEn+EmBT)X

线性矩阵方程组

  • 下面讨论几种类型方程组的解:设

A ∈ C m × m , B ∈ C n × n , F ∈ C m × n A \in C^{m \times m},B \in C^{n \times n},F \in C^{m \times n} ACm×mBCn×nFCm×n

  解Lyapunov矩阵方程:

  解 将矩阵两边拉直:

( A ⊗ E n + E n ⊗ B T ) X → = F → (A \otimes E_{n}+E_{n} \otimes B^{T}) \overrightarrow{X} = \overrightarrow{F} (AEn+EnBT)X =F

  因为矩阵方程与所得的线性方程组等价,得到矩阵方程组有解充要条件是:

r ( A ⊗ E n + E m ⊗ B T , F ) r(A \otimes E_{n} + E_{m }\otimes B^{T},F) r(AEn+EmBTF)

= r ( A ⊗ E n + E m ⊗ B T ) = r(A \otimes E_{n} + E_{m }\otimes B^{T}) =r(AEn+EmBT)

  有唯一解充要条件是:

∣ A ⊗ E n + E m ⊗ B T ∣ ≠ 0 |A \otimes E_{n} + E_{m} \otimes B^{T}| \neq 0 AEn+EmBT=0

  • A , F ∈ C n × n A,F \in C^{n \times n} AFCn×n,且 A A A的特征值都是实数,证明矩阵方程:

X + A X A + A 2 X A 2 = F X + AXA + A^{2}XA^{2} =F X+AXA+A2XA2=F

  有唯一解

  • 例10

A ∈ C m × m , B ∈ C n × n , X ( t ) ∈ C m × n A \in C^{m \times m},B \in C^{n \times n},X(t) \in C^{m \times n} ACm×mBCn×nX(t)Cm×n

  求解矩阵微分方程组的初值问题:

{ d X d t = A X + X B X ( 0 ) = X 0 \left\{\begin{array}{l} {\frac{d X}{d t}=A X+X B} \\ {X(0)=X_{0}} \end{array}\right. {dtdX=AX+XBX(0)=X0

   将矩阵两边拉直:

{ d X → d t = ( A ⊗ E n + E n ⊗ B T ) X ⃗ X ⃗ ( 0 ) = X ⃗ 0 \left\{\begin{array}{l} {\frac{\overrightarrow{dX}}{\mathrm{d} t}=\left(A \otimes E_{n}+E_{n} \otimes B^{\mathrm{T}}\right) \vec{X}} \\ {\vec{X}(0)=\vec{X}_{0}} \end{array}\right. {dtdX =(AEn+EnBT)X X (0)=X 0

  这是常系数齐次线性微分方程组,它的解:

X → ( t ) = e A ⊗ E n + E m ⊗ B T t X 0 → \overrightarrow{X}(t) = e^{A \otimes E_{n} + E_{m} \otimes B^{T} t} \overrightarrow{X_{0}} X (t)=eAEn+EmBTtX0

= ( e A t ⊗ e B T t ) X 0 → = (e^{At} \otimes e^{B^{T}t}) \overrightarrow{X_{0}} =(eAteBTt)X0

  再由:

A X B → = ( A ⊗ B T ) X → \overrightarrow{AXB} = (A \otimes B^{T})\overrightarrow{X} AXB =(ABT)X

( e A t ⊗ e B T t ) X 0 → = e A t X 0 e B t → (e^{At} \otimes e^{B^{T}t}) \overrightarrow{X_{0}}=\overrightarrow{e^{At}X_{0}e^{Bt}} (eAteBTt)X0 =eAtX0eBt

  所以:

X → ( t ) = e A t X 0 e B t → \overrightarrow{X}(t) = \overrightarrow{e^{At}X_{0}e^{Bt}} X (t)=eAtX0eBt

X ( t ) = e A t X 0 e B t X(t) =e^{At}X_{0}e^{Bt} X(t)=eAtX0eBt

我的微信公众号名称:小小何先生
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐