在Type C刚出来的时候,当时有一媒体也曾广泛报道了的“Benson Leung saga”事件。因为错误连接了USB Type-C线缆,Google工程师Leung最终毁掉了800美元的Chromebook Pixel笔记本电脑,随着如今Type C连接器厂商越来越来,竞争相当激烈,各种不符合协议规范要求的连接器也布满江湖,今天我们来聊聊Type C连接器中的56k欧姆电阻及电容。ac07f5d71e6d77c4db5c71272c10ce4f.jpeg

科普:TYPE C连接器的PIN脚定义

24P USB-TypeC 引脚定义

ba3d253cc23bad6248cebb56d95fb1d8.png

USB 2.0差分信号只会连接其中一边。因USB Type-c 插头 无B6、B7

16P USB-TypeC 引脚定义

24Pin全功能的TypeC好用是好用,但接口的采购成本比较高。况且小家电使用的MCU就没有USB3.0,USB2.0就足够一般设备的使用,于是就有了16Pin的TypeC

71d02c21a69e06d3f0a1cdd2fc9ade35.png

16Pin TypeC在24Pin的基础上阉割了USB3.0的TX1/2、RX1/2,保留了SBU1/2、CC1/2、USB2.0的D+D-,除了没有USB3.0/3.1高速传输外,其他别无二致,同样支持 PD快充、音频设备、HDMI传输、调试模式等功能。

12P USB-TypeC 引脚定义

16Pin一般为连接器厂家封装的正式名称,而其实日常生活中习惯称呼为12Pin。这是因为接口设计时,将TypeC母座两端的两个Vbus和GND出线都并拢了起来,实际是16条出线,但焊接的焊盘只要12个。

52bc2d4f701c07127dade8da9e241967.png

6P USB-TypeC 引脚定义

对于玩具、电动牙刷等众多日常生活用品,产品定位上没有USB通信的需求,只需要USB取电充电。那么连USB2.0都可以省掉了。6Pin TypeC正式出道。

6Pin TypeC仅仅保留Vbus、GND、CC1、CC2。接口两侧对称分布着两组GND、Vbus,使得防反插功能保留,粗线也让其更为方便的传输大电流。CC1、CC2用于PD设备识别,承载USB-PD的通信,以向供电端请求电源供给。在传输电力的同时,USB数据传输不会受到影响。

62c75b75b79297ffaa7ade295eb92b49.png

科普:什么是协议中的上拉电阻,下拉电阻

电阻在电路中起限制电流的作用。上拉电阻和下拉电阻是经常提到也是经常用到的电阻。在每个系统的设计中都用到了大量的上拉电阻和下拉电阻。简单概括为:电源到器件引脚上的电阻叫上拉电阻,作用是平时使该引脚为高电平,地到器件引脚上的电阻叫下拉电阻,作用是平时使该引脚为低电平。低电平在IC内部与GND相连接;高电平在IC内部与超大电阻相连接。上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用,下拉同理。对于非集电极(或漏极)开路输出型电路(如普通门电路,其提升电流和电压的能力是有限的,上拉和下拉电阻的主要功能是为集电极开路输出型电路提供输出电流通道。上拉是对器件注入电流,下拉是输出电流;强弱只是上拉或下拉电阻的阻值不同,没有什么严格区分。当IC的I/O端口,节点为高电平时,节点处和GND之间的阻抗很大,可以理解为无穷大,这个时候通过上拉电阻(如4.7K欧,10K欧电阻)接到VCC上,上拉电阻的分压几乎可以忽略不计;当I/O端口节点需要为低电平时,直接接GND就可以了,这个时候VCC与GND是通过刚才的上拉电阻(如4.7K欧,10K欧电阻)连接的,通过的电流很小,可以忽略不计。

上拉电阻,下拉电阻的作用简述

1、提高电压准位

当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平,这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值;OC门电路必须加上拉电阻,以提高输出的高电平值。

2、加大输出引脚的驱动能力

有的单片机引脚上也常使用上拉电阻。

3、N/A引脚(没有连接的引脚)防静电、防干扰;

在CMOS芯片上,为了防止静电造成损坏,不用的引脚不能悬空,一般接上拉电阻降低输入阻抗,提供泄荷通路。同时引脚悬空就比较容易接收外界的电磁干扰。

4、电阻匹配

抑制反射波干扰,长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻使电阻匹配,能有效的抑制反射波干扰。

5、预设空间状态/默认电位

在一些CMOS输入端接上拉或下拉电阻是为了预设默认电位。当不用这些引脚时,这些输入端下拉接低电平或上拉接高电平。在I2C等总线上空闲时的状态是由上下拉电阻获得的。

6、提高芯片输入信号的噪声容限

输入端如果是高阻状态,或高阻抗输入端处于悬空状态,此时需要加上拉或下拉电阻,以免受到随机电平的影响,进而影响电路工作。同样,如果输出端处于被动状态,需要加上拉或下拉电阻,如输出端仅仅是一个三极管的集电极,从而提高芯片输入信号的噪声容限,增强抗干扰能力。

协会如何定义使用相关电阻

大家最早认识快充应该是从高通CPU的QC开始的。通过提高输电电压,来提高输送功率。但QC协议中,通信使用的是USB的DP、DM,这就导致充电的时候会对USB通信造成影响。 而USB-PD对电源设备的识别依靠CC1、CC2引脚,避免了QC标准与DP、DM的冲突。使得USB-PD在传输电力的同时,数据传输不会受到影响,由于 USB-PD 的输电与CC1、CC2引脚密切相关,小家电这些无内置PD协议芯片的小产品,如果想从 USB-PD 供给端取电,需要在 CC1、CC2引脚配置Ra/Rd下拉电阻,无下拉电阻则会影响受电。

1bfe30636ff5cd2e4d8fb25afd0aca45.jpeg

Type-C有 1.5A 和 3A 两种目前最常见的电流模式,其主要取决于DFP的输出能力。DFP通过CC引脚上的电压告知UFP供电能力。UFP端的下拉电阻Rd=5.1K,DFP就可以通过其上拉电阻或者电流源在CC引脚上产生电压

551bad75f6e5776a658a6ea65720383a.jpeg

Type-C协议规范给出了不同输出模式下上拉电阻或电流源的规格,简单的说就是如果56K电阻意味着默认给USB3.0的电流是5V,900ma左右,如果10K电阻意味着默认给你5V,3A,如果你的是小电流的电气,用10K电阻,这个时候就会被无情的击穿,现在市场上大多数这个电阻用在USB-A到USB-C的转接线中。比如你的手机是C接口的,通过这个电缆连接到笔记本的USB-A接口上充电。这个56k电阻告诉手机这是一个传统的USB接口,必须按照协议进行协商来决定输出电流,特别是针对传统的只能输出500mA电流的USB接口。协商以后,会按照USB主机端接口的输出能力给手机充电。如果这个电阻不正确,或者说一些不好的电缆,会使用3A的电流,告诉手机从主机那边获取3A的电流,这样子的话,会对USB-A那边造成很大影响,烧毁?着火?那就得看主机端设计的情况了,所以usb type c电路中加合理规格的电容可以稳定电路,防止主芯片被大电流击穿。

6d212c979c818fce1059e6e8eaaa1093.jpeg

举例来说,当DFP给CC引脚提供330uA的电流时,CC引脚上电压则为330uA * 5.1kOhms = 1.683V。根据下表,DFP则被识别为vRd-3.0标准。当DFP用10k电阻把CC引脚上拉至4.75~5.5V时,CC引脚上的电压则为1.688V,DFP也会被识别为vRd-3.0标准。

6eb65b85ec0267ea7e29683f2c2c9f34.jpeg

如上面图的引脚定义,我们知道,不管是多少PIN位,Type-C电缆上都一共有两个CC引脚,如果其中一个用来识别DFP与UFP,那么另外一个就可以用来作为VCONN为主动电缆提供电源。当DFP检测到下拉电阻为Ra=800~1200Ohms时,这个CC引脚将切换至VCONN对外输出4.75~5.5V,功率最大1W。精确的功耗、多功能信号和坚固耐用的设计是选择USB Type-C附件的关键考虑因素;设计不佳的USB Type-C线缆、连接器和其他附件可能会对其所服务的硬件造成永久性损坏。因此,Type C 线缆(每端都配有Type C 连接器)符合严格的质量标准是非常必要的,下面是我们建议的电阻电容配置,仅供参考交流学习。

序号
规格描述
电阻电容选配建议
1
USB 2.0 CM TO CM 空板(不需要接电容,电阻)
2 USB 2.0 CM TO AM 正极与A5接56KQ电阻
3 USB 2.0 CM TO MICRO 5P/F 正极与A5接56KQ电阻
4 USB 2.0 CM TO BM 负极与A5接5.1KQ
5 USB 2.0 CM TO MINI 5P/M 负极与A5接5.1KQ
6 USB 2.0 CM TO MICRO BM 负极与A5接5.1KQ
7 USB2.0 CM TO AF 负极与A5接5.1KQ
8 USB2.0 CM TO LIGHTNING 负极与A5接5.1KQ
9
USB 3.1 CM TO CM (带E-MARK) 接点多接B5PIN
10
USB 3.1 CM TO CM (不带E-MARK) 正负极间接lOnf电容
11
USB 3.1 CM TO AM 正极与A5接56KQ电阻,正负极间接lOnf电容
12
USB 3.1 CM TO BM 负极与A5接5.1KQ电阻,正负极间接lOnf电容
13
USB 3.1 CM TO MICRO BM 负极与A5接5.1KQ电阻,正负极间接lOnf电容
14
USB3.1 CM TO AF 负极与A5接5.1KQ电阻,正负极间接lOnf电容

Logo

AtomGit 是由开放原子开源基金会联合 CSDN 等生态伙伴共同推出的新一代开源与人工智能协作平台。平台坚持“开放、中立、公益”的理念,把代码托管、模型共享、数据集托管、智能体开发体验和算力服务整合在一起,为开发者提供从开发、训练到部署的一站式体验。

更多推荐