本章节主要讲解直流减速电机控制原理,电机驱动电路,以及如何使用PWM控制直流减速电机

前言

1.软件准备:STM32CubeMx、Keil5_ MDK

2.硬件准备:STM32F103C8T6核心板、TB6612电机驱动模块/L298N电机驱动、18650锂电池3节/3S航模电池、杜邦线若干

直流减速电机

       图2-1为市场上常用直流减速电机的图片减速电机由直流电机加上减速齿轮构成。减速齿轮决定减速电机的减速比,减速比大电机转速越慢,力矩越大。减速电机一般驱动电压有 12V 和 24V 的,驱动电压越大同样减速比减速电机对应的力矩也就越大,同时耗电电流也会增加。

       下图为某厂家 370减速电机的参数表,我们可以从表中看出与减速电机减速比和驱动电压相对应的力矩、电流等参数的相关关系。

       直流电机有两个引脚,当我们正向给电机正向通电时电机正转,当我们反向给电机通电时电机反转。如图 2-3 所示为,当电机的 1 脚施加正极,2 脚施加负极时电机正转;电机的 2 脚施加正极,1 脚施加负极电机反转。

 直流电机调速

       对于电机的调速我们需要通过脉冲宽度调制(Pulse width modulation,PWM)来实现,PWM 的占空比为高电平占整个调制周期的时间比例。
       如图 2-4 所示为脉冲宽度调制的的原理图示,比如高电平时间为 8ms,低电平时间为 2ms时,这是整个脉宽周期是为 10ms,占空比即为 80%。我们通过此波形来控制电机即可实现电机的速度控制,且占空比越高的话,高电平的比例越高,则电机速度就会越快,反之就越慢,一般PWM的频率应大于 1KHZ。当然单片机引脚产生的这个 PWM 波形肯定是不可能直接驱动电机的,中间需要使用驱动电路。

        图 2-5 左为单向电机驱动电路,PWM 引脚为高电平时 N 沟道 MOS 管导通,如果把电机看成电阻的话,这是电机两端电压应该为 12VPWM 引脚为低电平时 N 沟道 MOS管截止,电机两端电压应该为 0V。但实际电机并不能看成电阻

        图 2-5 右的电路等效为右边的电路,我们可以把电机看成一个电感,我们知道电感有储能的作用,所以当 MOS管截止电感会释放能量,所以电机两端电压并不是 0V

        同样当 MOS 管导通时电感会吸收能量,所以电机两端电压也并不是 12V。而是与 PWM 占空比相关,电机两端电压应该为  𝑉𝑚=𝑃𝑑𝑉𝑖 , 𝑉𝑚 为电机实际电压,  𝑃𝑑  为占空比,  𝑉𝑖 为给电机供电电压。

        如果 PWM占空比为 80%,电机供电电压为 12V 的话,此时电机的实际电压应为 9.6V,所以调PWM 占空比调节电机转速也就是调节电机两端电压调节电机转速。但是PWM 脉冲周期需要小于电感储放能的时间。

电机驱动电路

        一般我们控制电机需要控制电机的正反转,一个 MOS 管并不能满足我们的需求,所以我们需要通过 H 桥电路来实现,H 桥需要 4 个 MOSFET,这样电路设计起来比较麻烦。市场上有帮我们搭建好的 H 桥电机驱动芯片,这里我们用到的驱动芯片为TB6612FNG,如下图所示,
TB6612FNG介绍  
        单片机引脚的电流一般只有几十个毫安,无法驱动电机,因此一般是通过单片机控制电机驱动芯片进而控制电机。TB6612是比较常用的电机驱动芯片之一。

        TB6612FNG可以同时控制两个电机,工作电流1.2A,最大电流3.2A。

AIN1/2、BIN1/2接单片机的GPIO口。PWMA/B接单片机的定时器口(配置为定时器PWM)。AO1/2、BO1/2接电机的正负极。

        PWMA、AIN1/2、AO1/2为一组驱动一个电机, PWMB、BIN1/2、BO1/2为一组驱动另一个电机。

        STBY为正常工作、待机状态控制引脚,一般接3.3V电即可。VM为电机驱动电压输入(<12V,可接3S锂电池),VCC为逻辑电平输入端(2.7V~5.5V)。

用户可通过配置AIN1/2、BIN1/2的电平状态控制电机转向,如下图TB6612电机驱动真值表,

       我们将VM和GND接入电源正极(6~12V,一般2-3节锂电池)和负极(GND需要与主控板共地),PWMA接入主控板上PA6端口,AIN1接入主控板的PB12端口,AIN2接入主控板的PB13端口,STBY接入3.3V,AO1和AO2接入电机的正负极。

电机驱动程序实现

定时器配置和GPIO配置均通过STM32CUBEMX配置,本此教程不再赘述,详细请见以往PWM配置教程STM32CubeMx使用教程(五)—— 使用PWM控制蜂鸣器演唱孤勇者

GPIO配置

void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15, GPIO_PIN_RESET);

  /*Configure GPIO pins : PB12 PB13 PB14 PB15 */
  GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

PWM配置

void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 72-1;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 1000-1;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */
  HAL_TIM_MspPostInit(&htim3);

}

电机控制代码

/**************************************************************************
函 数 名:void motor_ctrl(int16_t left_speed,int16_t right_speed)
功    能:电机速度设定函数
入口参数:left_speed左电机速度 right_speed右电机速度
**************************************************************************/
void motor_ctrl(int16_t left_speed,int16_t right_speed)
{
	if(left_speed>=0) //左电机速度大于0时,电机正转
	{
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_12,GPIO_PIN_SET);
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_13,GPIO_PIN_RESET);
	}
	else 	//电机反转					    			
	{		
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_12,GPIO_PIN_RESET);
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_13,GPIO_PIN_SET);
  }
	
	if(right_speed>=0)  
	{
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_14,GPIO_PIN_SET);
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_RESET);
	}
	else 						    			
	{		
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_14,GPIO_PIN_RESET);
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);
  }
	
	__HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_1, abs(left_speed));//将速度占空比赋给电机
	__HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2, abs(right_speed);
}

主函数 

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */
		HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_1);//开启定时器PWM
		HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_2);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		motor_ctrl(500,-500);
		HAL_Delay(5000);
		motor_ctrl(-500,500);
		HAL_Delay(5000);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

具体实现

可以观察到当速度正反改变,电机转动方向也会改变。

PWM控制电机调速

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐