最近在优化大批量数据插入的性能问题。
   项目原来使用的大批量数据插入方法是Mybatis的foreach拼接SQL的方法。
   我发现不管改成Mybatis Batch提交或者原生JDBC Batch的方法都不起作用,实际上在插入的时候仍然是一条条记录的插,速度远不如原来Mybatis的foreach拼接SQL的方法。这对于常理来说是非常不科学的。
下面先罗列一下三种插入方式:
最近在优化大批量数据插入的性能问题。
   项目原来使用的大批量数据插入方法是Mybatis的foreach拼接SQL的方法。
   我发现不管改成Mybatis Batch提交或者原生JDBC Batch的方法都不起作用,实际上在插入的时候仍然是一条条记录的插,速度远不如原来Mybatis的foreach拼接SQL的方法。这对于常理来说是非常不科学的。
下面先罗列一下三种插入方式:
public class NotifyRecordDaoTest extends BaseTest {
    @Resource(name = "masterDataSource")
    private DataSource dataSource;
    @Test
    public void insert() throws Exception {
        Connection connection = dataSource.getConnection();
        connection.setAutoCommit(false);
        String sql = "insert into notify_record(" +
                "        partner_no," +
                "        trade_no, loan_no, notify_times," +
                "        limit_notify_times, notify_url, notify_type,notify_content," +
                "        notify_status)" +
                "        values(?,?,?,?,?,?,?,?,?) ";
        PreparedStatement statement = connection.prepareStatement(sql);
        for (int i = 0; i < 10000; i++) {
            statement.setString(1, "1");
            statement.setString(2, i + "");
            statement.setInt(3, 1);
            statement.setInt(4, 1);
            statement.setString(5, "1");
            statement.setString(6, "1");
            statement.setString(7, "1");
            statement.setString(8, "1");
            statement.setString(9, "1");
            statement.addBatch();
        }
        long start = System.currentTimeMillis();
        statement.executeBatch();
        connection.commit();
        connection.close();
        statement.close();
        System.out.println(System.currentTimeMillis() - start);
    }
    @Test
    public void insertB() {
        List<NotifyRecordEntity> notifyRecordEntityList = Lists.newArrayList();
        for (int i = 0; i < 10000; i++) {
            NotifyRecordEntity record = new NotifyRecordEntity();
            record.setLastNotifyTime(new Date());
            record.setPartnerNo("1");
            record.setLimitNotifyTimes(1);
            record.setNotifyUrl("1");
            record.setLoanNo("1");
            record.setNotifyContent("1");
            record.setTradeNo("" + i);
            record.setNotifyTimes(1);
            record.setNotifyType(EnumNotifyType.DAIFU);
            record.setNotifyStatus(EnumNotifyStatus.FAIL);
            notifyRecordEntityList.add(record);
        }
        long start = System.currentTimeMillis();
        Map<String, Object> params = Maps.newHashMap();
        params.put("notifyRecordEntityList", notifyRecordEntityList);
        DaoFactory.notifyRecordDao.insertSelectiveList(params);
        System.out.println(System.currentTimeMillis() - start);
    }
    @Resource
    SqlSessionFactory sqlSessionFactory;
    @Test
    public void insertC() {
        SqlSession sqlsession = sqlSessionFactory.openSession(ExecutorType.BATCH, false);
        NotifyRecordDao notifyRecordDao = sqlsession.getMapper(NotifyRecordDao.class);
        int num = 0;
        for (int i = 0; i < 10000; i++) {
            NotifyRecordEntity record = new NotifyRecordEntity();
            record.setLastNotifyTime(new Date());
            record.setPartnerNo("1");
            record.setLimitNotifyTimes(1);
            record.setNotifyUrl("1");
            record.setLoanNo("1");
            record.setNotifyContent("1");
            record.setTradeNo("s" + i);
            record.setNotifyTimes(1);
            record.setNotifyType(EnumNotifyType.DAIFU);
            record.setNotifyStatus(EnumNotifyStatus.FAIL);
            notifyRecordDao.insert(record);
            num++;
//            if(num>=1000){
//                sqlsession.commit();
//                sqlsession.clearCache();
//                num=0;
//            }
        }
        long start = System.currentTimeMillis();
        sqlsession.commit();
        sqlsession.clearCache();
        sqlsession.close();
        System.out.println(System.currentTimeMillis() - start);
    }
}
测试插入一万条数据的发现除了拼接SQL的方式需要用5秒多的时间外,Mybatis Batch和原生JDBC Batch都需要50多秒,怎么想都觉得不可能,写法没有问题一定是数据库或者数据库连接配置上有问题。
后来才发现要批量执行的话,JDBC连接URL字符串中需要新增一个参数:rewriteBatchedStatements=true
master.jdbc.url=jdbc:mysql://112.126.84.3:3306/outreach_platform?useUnicode=true&characterEncoding=utf8&allowMultiQueries=true&rewriteBatchedStatements=true
关于rewriteBatchedStatements这个参数介绍:
MySQL的JDBC连接的url中要加rewriteBatchedStatements参数,并保证5.1.13以上版本的驱动,才能实现高性能的批量插入。
MySQL JDBC驱动在默认情况下会无视executeBatch()语句,把我们期望批量执行的一组sql语句拆散,一条一条地发给MySQL数据库,批量插入实际上是单条插入,直接造成较低的性能。
只有把rewriteBatchedStatements参数置为true, 驱动才会帮你批量执行SQL
另外这个选项对INSERT/UPDATE/DELETE都有效
添加rewriteBatchedStatements=true这个参数后的执行速度比较:
  同个表插入一万条数据时间近似值:
  JDBC BATCH 1.1秒左右 > Mybatis BATCH 2.2秒左右 > 拼接SQL 4.5秒左右
 新一代开源开发者平台 GitCode,通过集成代码托管服务、代码仓库以及可信赖的开源组件库,让开发者可以在云端进行代码托管和开发。旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。
更多推荐
所有评论(0)