详解keras的model.summary()输出参数Param计算过程
摘要
使用keras构建深度学习模型,我们会通过model.summary()
输出模型各层的参数状况,如下:
________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_4 (Dense) (None, 7) 35
_________________________________________________________________
activation_4 (Activation) (None, 7) 0
_________________________________________________________________
dense_5 (Dense) (None, 13) 104
_________________________________________________________________
activation_5 (Activation) (None, 13) 0
_________________________________________________________________
dense_6 (Dense) (None, 5) 70
_________________________________________________________________
activation_6 (Activation) (None, 5) 0
=================================================================
Total params: 209
Trainable params: 209
Non-trainable params: 0
_________________________________________________________________
通过这些参数,可以看到模型各个层的组成(dense表示全连接层)。也能看到数据经过每个层后,输出的数据维度。
还能看到Param,它表示每个层参数的个数,这个Param是怎么计算出来的呢?
本文详细讲解了如下两种模型的Param的计算过程。
- 基础神经网络
- CNN
基本神经网络Param
计算过程
我们先用如下代码构建一个最简单的神经网络模型,它只有3个全连接层组成:
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
model = Sequential() # 顺序模型
# 输入层
model.add(Dense(7, input_shape=(4,))) # Dense就是常用的全连接层
model.add(Activation('sigmoid')) # 激活函数
# 隐层
model.add(Dense(13)) # Dense就是常用的全连接层
model.add(Activation('sigmoid')) # 激活函数
# 输出层
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])
model.summary()
这个模型的参数输出如下:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_4 (Dense) (None, 7) 35
_________________________________________________________________
activation_4 (Activation) (None, 7) 0
_________________________________________________________________
dense_5 (Dense) (None, 13) 104
_________________________________________________________________
activation_5 (Activation) (None, 13) 0
_________________________________________________________________
dense_6 (Dense) (None, 5) 70
_________________________________________________________________
activation_6 (Activation) (None, 5) 0
=================================================================
Total params: 209
Trainable params: 209
Non-trainable params: 0
_________________________________________________________________
全连接层神经网络的Param
,说明的是每层神经元权重的个数,所以它的计算如下:
- Param = (输入数据维度+1)* 神经元个数
之所以要加1,是考虑到每个神经元都有一个Bias。
第一个Dense层,输入数据维度是4(一维数据),有7个神经元。所以,Param=(4+1)*7=35.
第二个Dense层,输入数据维度是7(经过第一层7个神经元作用后,输出数据维度就是7了),有13个神经元。所以,Param=(7+1)*13=104.
第三个Dense层,输入数据维度是13(经过第二层13个神经元作用后,输出数据维度就是13了),有5个神经元。所以,Param=(13+1)*5=70.
卷积神经网络Param
计算过程
我们先用如下代码构建一个CNN模型,它有3个卷积层组成:
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras.layers import Convolution2D as Conv2D
from keras.layers import MaxPooling2D
from keras import backend as K
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 2),
input_shape=(8,8,1)))
convout1 = Activation('relu')
model.add(convout1)
model.add(Conv2D(64, (2, 3), activation='relu'))
model.add(Conv2D(64, (2, 2), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.summary()
这个模型的参数输出如下:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_10 (Conv2D) (None, 6, 7, 32) 224
_________________________________________________________________
activation_4 (Activation) (None, 6, 7, 32) 0
_________________________________________________________________
conv2d_11 (Conv2D) (None, 5, 5, 64) 12352
_________________________________________________________________
conv2d_12 (Conv2D) (None, 4, 4, 64) 16448
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 2, 2, 64) 0
_________________________________________________________________
dropout_7 (Dropout) (None, 2, 2, 64) 0
_________________________________________________________________
flatten_4 (Flatten) (None, 256) 0
_________________________________________________________________
dense_6 (Dense) (None, 128) 32896
_________________________________________________________________
dropout_8 (Dropout) (None, 128) 0
_________________________________________________________________
dense_7 (Dense) (None, 10) 1290
=================================================================
Total params: 63,210
Trainable params: 63,210
Non-trainable params: 0
_________________________________________________________________
根据[1],可知对CNN模型,Param的计算方法如下:
- (卷积核长度卷积核宽度通道数+1)*卷积核个数
所以,
第一个CONV层,Conv2D(32, kernel_size=(3, 2), input_shape=(8,8,1))
,Param=(3 * 2 * 1+1)*32 = 224.
第二个CONV层,Conv2D(64, (2, 3), activation='relu')
,经过第一个层32个卷积核的作用,第二层输入数据通道数为32,Param=(2 * 3 * 32+1)*64 = 12352.
第三个CONV层,Conv2D(64, (2, 2), activation='relu')
,经过第二个层64个卷积核的作用,第二层输入数据通道数为64,Param=(2 * 2 * 64+1)*64 = 16448.
dense_6 (Dense)这里的Param为什么是32896呢?
因为经过flatten_4 (Flatten)的作用,输出变为了256,而dense_6 (Dense)中有128个卷积核,所以Param=128*(256+1)= 32896。
参考
- [1] https://stackoverflow.com/questions/44608552/keras-cnn-model-parameters-calculation
更多推荐
所有评论(0)