Python爬虫实战之爬淘宝商品并做数据分析
前言
是这样的,之前接了一个金主的单子,他想在淘宝开个小鱼零食的网店,想对目前这个市场上的商品做一些分析,本来手动去做统计和分析也是可以的,这些信息都是对外展示的,只是手动比较麻烦,所以想托我去帮个忙。
一、 项目要求:
具体的要求如下:
1.在淘宝搜索“小鱼零食”,想知道前10页搜索结果的所有商品的销量和金额,按照他划定好的价格区间来统计数量,给我划分了如下的一张价格区间表:
2.这10页搜索结果中,商家都是分布在全国的哪些位置?
3.这10页的商品下面,用户评论最多的是什么?
4.从这些搜索结果中,找出销量最多的10家店铺名字和店铺链接。
从这些要求来看,其实这些需求也不难实现,我们先来看一下项目的效果。
二、效果预览
获取到数据之后做了下分析,最终做成了柱状图,鼠标移动可以看出具体的商品数量。
在10~30元之间的商品最多,越往后越少,看来大多数的产品都是定位为低端市场。
然后我们再来看一下全国商家的分布情况:
可以看出,商家分布大多都是在沿海和长江中下游附近,其中以沿海地区最为密集。
然后再来看一下用户都在商品下面评论了一些什么:
字最大的就表示出现次数最多,口感味道、包装品质、商品分量和保质期是用户评价最多的几个方面,那么在产品包装的时候可以从这几个方面去做针对性阐述,解决大多数人比较关心的问题。
最后就是销量前10的店铺和链接了。
在拿到数据并做了分析之后,我也在想,如果这个东西是我来做的话,我能不能看出来什么东西?或许可以从价格上找到切入点,或许可以从产品地理位置打个差异化,又或许可以以用户为中心,由外而内地做营销。
越往深想,越觉得有门道,算了,对于小鱼零食这一块我是外行,不多想了。
三、爬虫源码
由于源码分了几个源文件,还是比较长的,所以这里就不跟大家一一讲解了,懂爬虫的人看几遍就看懂了,不懂爬虫的说再多也是云里雾里,等以后学会了爬虫再来看就懂了。
import csv
import os
import time
import wordcloud
from selenium import webdriver
from selenium.webdriver.common.by import By
def tongji():
prices = []
with open('前十页销量和金额.csv', 'r', encoding='utf-8', newline='') as f:
fieldnames = ['价格', '销量', '店铺位置']
reader = csv.DictReader(f, fieldnames=fieldnames)
for index, i in enumerate(reader):
if index != 0:
price = float(i['价格'].replace('¥', ''))
prices.append(price)
DATAS = {'<10': 0, '10~30': 0, '30~50': 0,
'50~70': 0, '70~90': 0, '90~110': 0,
'110~130': 0, '130~150': 0, '150~170': 0, '170~200': 0, }
for price in prices:
if price < 10:
DATAS['<10'] += 1
elif 10 <= price < 30:
DATAS['10~30'] += 1
elif 30 <= price < 50:
DATAS['30~50'] += 1
elif 50 <= price < 70:
DATAS['50~70'] += 1
elif 70 <= price < 90:
DATAS['70~90'] += 1
elif 90 <= price < 110:
DATAS['90~110'] += 1
elif 110 <= price < 130:
DATAS['110~130'] += 1
elif 130 <= price < 150:
DATAS['130~150'] += 1
elif 150 <= price < 170:
DATAS['150~170'] += 1
elif 170 <= price < 200:
DATAS['170~200'] += 1
for k, v in DATAS.items():
print(k, ':', v)
def get_the_top_10(url):
top_ten = []
# 获取代理
ip = zhima1()[2][random.randint(0, 399)]
# 运行quicker动作(可以不用管)
os.system('"C:\Program Files\Quicker\QuickerStarter.exe" runaction:5e3abcd2-9271-47b6-8eaf-3e7c8f4935d8')
options = webdriver.ChromeOptions()
# 远程调试Chrome
options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
options.add_argument(f'--proxy-server={ip}')
driver = webdriver.Chrome(options=options)
# 隐式等待
driver.implicitly_wait(3)
# 打开网页
driver.get(url)
# 点击部分文字包含'销量'的网页元素
driver.find_element(By.PARTIAL_LINK_TEXT, '销量').click()
time.sleep(1)
# 页面滑动到最下方
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
time.sleep(1)
# 查找元素
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
for index, item in enumerate(items):
if index == 10:
break
# 查找元素
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
paid_num_data = item.find_element(By.XPATH, './div[2]/div[1]/div[@class="deal-cnt"]').text
store_location = item.find_element(By.XPATH, './div[2]/div[3]/div[@class="location"]').text
store_href = item.find_element(By.XPATH, './div[2]/div[@class="row row-2 title"]/a').get_attribute(
'href').strip()
# 将数据添加到字典
top_ten.append(
{'价格': price,
'销量': paid_num_data,
'店铺位置': store_location,
'店铺链接': store_href
})
for i in top_ten:
print(i)
def get_top_10_comments(url):
with open('排名前十评价.txt', 'w+', encoding='utf-8') as f:
pass
# ip = ipidea()[1]
os.system('"C:\Program Files\Quicker\QuickerStarter.exe" runaction:5e3abcd2-9271-47b6-8eaf-3e7c8f4935d8')
options = webdriver.ChromeOptions()
options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
# options.add_argument(f'--proxy-server={ip}')
driver = webdriver.Chrome(options=options)
driver.implicitly_wait(3)
driver.get(url)
driver.find_element(By.PARTIAL_LINK_TEXT, '销量').click()
time.sleep(1)
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
original_handle = driver.current_window_handle
item_hrefs = []
# 先获取前十的链接
for index, item in enumerate(items):
if index == 10:
break
item_hrefs.append(
item.find_element(By.XPATH, './/div[2]/div[@class="row row-2 title"]/a').get_attribute('href').strip())
# 爬取前十每个商品评价
for item_href in item_hrefs:
# 打开新标签
# item_href = 'https://item.taobao.com/item.htm?id=523351391646&ns=1&abbucket=11#detail'
driver.execute_script(f'window.open("{item_href}")')
# 切换过去
handles = driver.window_handles
driver.switch_to.window(handles[-1])
# 页面向下滑动一部分,直到让评价那两个字显示出来
try:
driver.find_element(By.PARTIAL_LINK_TEXT, '评价').click()
except Exception as e1:
try:
x = driver.find_element(By.PARTIAL_LINK_TEXT, '评价').location_once_scrolled_into_view
driver.find_element(By.PARTIAL_LINK_TEXT, '评价').click()
except Exception as e2:
try:
# 先向下滑动100,放置评价2个字没显示在屏幕内
driver.execute_script('var q=document.documentElement.scrollTop=100')
x = driver.find_element(By.PARTIAL_LINK_TEXT, '评价').location_once_scrolled_into_view
except Exception as e3:
driver.find_element(By.XPATH, '/html/body/div[6]/div/div[3]/div[2]/div/div[2]/ul/li[2]/a').click()
time.sleep(1)
try:
trs = driver.find_elements(By.XPATH, '//div[@class="rate-grid"]/table/tbody/tr')
for index, tr in enumerate(trs):
if index == 0:
comments = tr.find_element(By.XPATH, './td[1]/div[1]/div/div').text.strip()
else:
try:
comments = tr.find_element(By.XPATH,
'./td[1]/div[1]/div[@class="tm-rate-fulltxt"]').text.strip()
except Exception as e:
comments = tr.find_element(By.XPATH,
'./td[1]/div[1]/div[@class="tm-rate-content"]/div[@class="tm-rate-fulltxt"]').text.strip()
with open('排名前十评价.txt', 'a+', encoding='utf-8') as f:
f.write(comments + '\n')
print(comments)
except Exception as e:
lis = driver.find_elements(By.XPATH, '//div[@class="J_KgRate_MainReviews"]/div[@class="tb-revbd"]/ul/li')
for li in lis:
comments = li.find_element(By.XPATH, './div[2]/div/div[1]').text.strip()
with open('排名前十评价.txt', 'a+', encoding='utf-8') as f:
f.write(comments + '\n')
print(comments)
def get_top_10_comments_wordcloud():
file = '排名前十评价.txt'
f = open(file, encoding='utf-8')
txt = f.read()
f.close()
w = wordcloud.WordCloud(width=1000,
height=700,
background_color='white',
font_path='msyh.ttc')
# 创建词云对象,并设置生成图片的属性
w.generate(txt)
name = file.replace('.txt', '')
w.to_file(name + '词云.png')
os.startfile(name + '词云.png')
def get_10_pages_datas():
with open('前十页销量和金额.csv', 'w+', encoding='utf-8', newline='') as f:
f.write('\ufeff')
fieldnames = ['价格', '销量', '店铺位置']
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
infos = []
options = webdriver.ChromeOptions()
options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
# options.add_argument(f'--proxy-server={ip}')
driver = webdriver.Chrome(options=options)
driver.implicitly_wait(3)
driver.get(url)
# driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
for index, item in enumerate(items):
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
paid_num_data = item.find_element(By.XPATH, './div[2]/div[1]/div[@class="deal-cnt"]').text
store_location = item.find_element(By.XPATH, './div[2]/div[3]/div[@class="location"]').text
infos.append(
{'价格': price,
'销量': paid_num_data,
'店铺位置': store_location})
try:
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
except Exception as e:
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
for i in range(9):
time.sleep(1)
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
for index, item in enumerate(items):
try:
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
except Exception:
time.sleep(1)
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
paid_num_data = item.find_element(By.XPATH, './div[2]/div[1]/div[@class="deal-cnt"]').text
store_location = item.find_element(By.XPATH, './div[2]/div[3]/div[@class="location"]').text
infos.append(
{'价格': price,
'销量': paid_num_data,
'店铺位置': store_location})
try:
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
except Exception as e:
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
# 一页结束
for info in infos:
print(info)
with open('前十页销量和金额.csv', 'a+', encoding='utf-8', newline='') as f:
fieldnames = ['价格', '销量', '店铺位置']
writer = csv.DictWriter(f, fieldnames=fieldnames)
for info in infos:
writer.writerow(info)
if __name__ == '__main__':
url = 'https://s.taobao.com/search?q=%E5%B0%8F%E9%B1%BC%E9%9B%B6%E9%A3%9F&imgfile=&commend=all&ssid=s5-e&search_type=item&sourceId=tb.index&spm=a21bo.21814703.201856-taobao-item.1&ie=utf8&initiative_id=tbindexz_20170306&bcoffset=4&ntoffset=4&p4ppushleft=2%2C48&s=0'
# get_10_pages_datas()
# tongji()
# get_the_top_10(url)
# get_top_10_comments(url)
get_top_10_comments_wordcloud()
通过上面的代码,我们能获取到想要获取的数据,然后再Bar和Geo进行柱状图和地理位置分布展示,这两块大家可以去摸索一下。
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)