python求解多元多次方程组或非线性方程组
背景:如何使用python求解多元多次方程组或者非线性方程组。
原创内容,转载注明出处!请勿用于商业用途!
(上篇用python拟合2019nCov感染人数的文章被不少博主转载了,发的比较早,不少博主在文章基础上添加新内容也新发了新的更新后的预测,或者加入一些新的模块。博文链接如下:)
python实现logistic增长模型拟合2019-nCov确诊人数
python实现logistic增长模型拟合2019-nCov确诊人数2月1日更新
目录
一、多元多次方程
1.1 定义
我们常见的方程组有一元一次方程组,比如x+3=5这种,很简单很好解。
- 二元一次方程组,即方程组中有两个未知数,未知数的最高次数为1.
- 二元二次方程组:方程组中有两个未知数,未知数的最高次数为2.。此类方程组均有公式解法或者成形的解法。
但是面临多元多次方程组,解法错综复杂,是数学家们研究的内容。为了更好的解决此类问题,我们可以用python来实现。
1.2 例子
多元多次方程组例如下面这种,三元二次方程组:
下面这种,二元二次方程组。
第二个方程组实在比较复杂,因此需要借助python。
二、python求解工具包
python求解方程组的工具包较多。例如:
- numpy:numpy.linalg.solve 可以直接求解线性方程组,numpy是python非常常用的包,解的方程也较为初级。
- scipy:from scipy.optimize import fsolve,可以求解非线性方程组,使用较为方便,但是解集并不完备,可能漏掉一下解(后文会给个例子)scipy可以用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化,相对较初级易用
- sympy:此工具包功能相对强大,支持符号计算、高精度计算、解方程、微积分、组合数学、离散数学、几何学、概率与统计、物理学等方面的功能。github地址:https://github.com/sympy/sympy
- sage,不支持位运算,z3约束求解器,等其他工具包,本文不详述,感兴趣的可以查找相应的内容。
本文详细讲述scipy以及sympy求解多次方程的方法。
三、scipy方法
3.1 使用scipy的fsolve求解
关于scipy:下面这篇博文给的非常详细,https://blog.csdn.net/pipisorry/article/details/51106570
我们只将求解方程的部分。
用fsolve相对初级,也相对简单易操作,代码较为简单,只用将方程的表达式写出运行即可。fsolve近似看作用最小二乘法求解。不够很强大,很多情况下解集不完备或者无法解出。
例如对于,首先要定义相应的函数:
def solve_function(unsolved_value):
x,y,z=unsolved_value[0],unsolved_value[1],unsolved_value[2]
return [
x**2+y**2-10,
y**2+z**2-34,
x**2+z**2-26,
]
求解函数三个公式都为0时候的解,中括号内为初值[0, 0, 0]
solved=fsolve(solve_function,[0, 0, 0])
全部代码:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
python解方程
"""
from scipy.optimize import fsolve
def solve_function(unsolved_value):
x,y,z=unsolved_value[0],unsolved_value[1],unsolved_value[2]
return [
x**2+y**2-10,
y**2+z**2-34,
x**2+z**2-26,
]
solved=fsolve(solve_function,[0, 0, 0])
print(solved)
print("Program done!")
"""
运行结果:
[-1. 3. 5.]
Program done!
"""
看出运行结果来看,此结果并非完备解集。因为x,y,z都是可正可负。例如1或者-1,3或者-3,5或者-5,但是此工具包只能解出一个解。
3.2 非完备解
显而易见,x**2-9=0的解为3或者-3
def solve_function(unsolved_value):
x=unsolved_value[0]
return [
x**2-9,
]
solved=fsolve(solve_function,[0])
但是程序只能得出一个结果3,但是得不到-3
3.3 非线性方程的解
最简单的sin(x)=0.5,则x可能为π/6或者 5π/6
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
python解方程
"""
from scipy.optimize import fsolve
from math import sin,cos
def solve_function(unsolved_value):
x=unsolved_value[0]
return [
sin(x)-0.5
]
solved=fsolve(solve_function,[3.14])
print(solved)
solved=fsolve(solve_function,[0])
print(solved)
print("Program done!")
运行结果为:
[2.61799388]
[0.52359878]
Program done!
可以解出π/6或者 5π/6,中括号内为初始迭代的值。
3.4 无法求解
部分较难情况无法求解
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
python解方程
"""
from scipy.optimize import fsolve
def solve_function(unsolved_value):
x,y=unsolved_value[0],unsolved_value[1]
return [
x*x+2*x*y,
2*x*y-2*y*y
]
solved=fsolve(solve_function,[6, -3])
print(solved)
print("Program done!")
无法求解会给出报错,和用最小二乘法迭代得到明显错误的解。
[1.64526700e-115 1.33665018e-115]
A:\python\python\lib\site-packages\scipy\optimize\minpack.py:162: RuntimeWarning: The number of calls to function has reached maxfev = 600.
Program done!
warnings.warn(msg, RuntimeWarning)
四、sympy工具包求解
没安装可以在teiminal中pip install sympy,此工具包涉及支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散 数学、几何学、概率与统计、物理学等方面的功能。功能较为强大,解方程组时性能也较好。
官方地址:https://github.com/sympy/sympy
4.1 二元一次方程组
较为简单,
from sympy import *
# 二元一次方程
x = Symbol('x')
y = Symbol('y')
solved_value=solve([2*x+y-1, x-2*y], [x, y])
print(solved_value)
此方法较为简单,但是相应的自变量应当写成符号的形式,x=Symbol('x')
求解后有分数解:
{x: 2/5, y: 1/5}
Program done!
4.2 多解
多解情况与复数解
例如,多个解的情况,sympy可以很好的进行求解
x = Symbol('x')
solved_value=solve([x**2-9], [x])
print(solved_value)
输出结果:
[(-3,), (3,)]
4.3 复数解
复数解也可以很好解出:
# 复数解
solved_value = solve([x ** 2 + 9], [x])
print(solved_value)
solved_value = solve([x ** 4 - 9], [x])
print(solved_value)
"""
运行结果:
[(-3*I,), (3*I,)]
[(-sqrt(3),), (sqrt(3),), (-sqrt(3)*I,), (sqrt(3)*I,)]
"""
复数解也能较好解出
4.4 非线性求解
比如三角函数:
程序均能较好解出
# 非线性解
solved_value = solve([sin(x) - 0.5], [x])
print(solved_value)
solved_value = solve([sin(x) - 1], [x])
print(solved_value)
"""
[(0.523598775598299,), (2.61799387799149,)]
[(pi/2,)]
"""
4.5 较为复杂的二元二次方程
此题较难,无论人来算,很难算出,用scipy工具包也迭代不出解。但是sympy强大的功能可以很好的解出此方程。
# 二元二次方程组
x = Symbol('x')
y= Symbol('y')
solved_value=solve([x**2+2*x*y-6,2*x*y-2*y**2+3], [x,y])
print(solved_value)
有四组实数解:
[(-(-3 + sqrt(13))*sqrt(sqrt(13)/2 + 2), -sqrt(sqrt(13)/2 + 2)),
((-3 + sqrt(13))*sqrt(sqrt(13)/2 + 2), sqrt(sqrt(13)/2 + 2)),
(-sqrt(2 - sqrt(13)/2)*(-sqrt(13) - 3), -sqrt(2 - sqrt(13)/2)),
(sqrt(2 - sqrt(13)/2)*(-sqrt(13) - 3), sqrt(2 - sqrt(13)/2))]
复杂的问题终于解出,有四组实数解!
五、全部代码
#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
python解方程
created by xingxinagrui on 2020.2.24
"""
from scipy.optimize import fsolve
from math import sin,cos
from sympy import *
# 1-4 scipy
# 5-7 sympy
part=7
if part==1:
# 求解非线性方程组
def solve_function(unsolved_value):
x=unsolved_value[0]
return [
sin(x)-0.5
]
solved=fsolve(solve_function,[3.14])
print(solved)
solved=fsolve(solve_function,[0])
print(solved)
if part==2:
# 求解三元二次方程组
def solve_function(unsolved_value):
x, y, z = unsolved_value[0], unsolved_value[1], unsolved_value[2]
return [
x ** 2 + y ** 2 - 10,
y ** 2 + z ** 2 - 34,
x ** 2 + z ** 2 - 26,
]
solved = fsolve(solve_function, [0, 0, 0])
print(solved)
if part==3:
#解的非完备性
def solve_function(unsolved_value):
x = unsolved_value[0]
return [
x ** 2 - 9,
]
solved = fsolve(solve_function, [0])
print(solved)
if part == 4:
# 较难无法求解
def solve_function(unsolved_value):
x, y = unsolved_value[0], unsolved_value[1]
return [
x * x + 2 * x * y,
2 * x * y - 2 * y * y
]
solved = fsolve(solve_function, [6, -3])
print(solved)
if part == 5:
# 二元一次方程
x = Symbol('x')
y = Symbol('y')
solved_value=solve([2*x+y-1, x-2*y], [x, y])
print(solved_value)
if part == 6:
# 多解情况
x = Symbol('x')
solved_value=solve([x**2-9], [x])
print(solved_value)
# 复数解
solved_value = solve([x ** 2 + 9], [x])
print(solved_value)
solved_value = solve([x ** 4 - 9], [x])
print(solved_value)
# 非线性解
solved_value = solve([sin(x) - 0.5], [x])
print(solved_value)
solved_value = solve([sin(x) - 1], [x])
print(solved_value)
if part == 7:
# 二元二次方程组
x = Symbol('x')
y= Symbol('y')
solved_value=solve([x**2+2*x*y-6,2*x*y-2*y**2+3], [x,y])
print(solved_value)
print("Program done!")
博主其他文章:
python实现logistic增长模型拟合2019-nCov确诊人数
python实现logistic增长模型拟合2019-nCov确诊人数2月1日更新
支持向量机(Support Vector Machine,SVM)算法复杂度详解
王者荣耀中的数学原理及游戏策略(一)防御篇(护甲|魔抗|伤害运算机制)
机器学习算法基础问题(三)集成学习|adaboost与XGboost| EM算法
c++动态规划类算法编程汇总(四)集合的子集|最长子序列(矩阵)的和(积) | 最大子矩阵
更多推荐
所有评论(0)