1 三极管是什么?

        晶体三极管(Transistor)是一种半导体电子器件,也是电子工程中最基本的元件之一。它有三个区域,分别是P型半导体,N型半导体和P型半导体,从而形成PNP型晶体三极管或者NPN型晶体三极管。

        晶体三极管的主要作用是放大和控制电流或电压。其放大作用是通过控制输入信号的小变化来改变输出信号的大变化。而控制作用是根据输入信号的大小和类型,通过电流和电压的变化来控制器件的功率、频率和负载。

        三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。

        三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。

三极管工作原理

        晶体三极管工作原理可以简单地概括为以下几步:

  • 基极输入电流或电压的变化,通过空间电荷区的扩散和漂移作用,产生电子和空穴对。
  • 电子和空穴对通过扩散和漂移作用进入集电极和发射极,形成集电极电流和发射极电流。
  • 由于发射极电流通过基极电极和集电极电极之间的区域,从而控制了集电极电流的大小。
  • 当基极输入电流或电压较小的变化时,发射极电流也会随之变化,进而控制集电极电流的大小。

        晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N是负极的意思(代表英文中Negative),N型半导体在高纯度硅中加入磷取代一些硅原子,在电压刺激下产生自由电子导电,而P是正极的意思(Positive)是加入硼取代硅,产生大量空穴利于导电)。

        具体电子是如何运动的,忽略。在运用时,只需要把三极管的电流放大作用类比成一个阀门即可。

3 三极管的三种工作状态

3.1 截止状态

        当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

3.2 放大状态

        当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。

3.3 饱和状态

        当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。

输入输出特性曲线

        三极管特性曲线是反映三极管各电极电压和电流之间相互关系的曲线,是用来描述晶体三极管工作特性曲线,常用的特性曲线有输入特性曲线和输出特性曲线。这里以下图所示的共发射极电路来分析三极管的特性曲线。

4.1 输入特性曲线

        该曲线表示当e极与c极之间的电压Uec保持不变时,输入电流(即基极电流Ib)和输入电压(即基极与发射极间电压Ube)之间的关系曲线,如下图所示:

        一般状况下,当UCE≥1V时,集电结就处于反向偏置,此刻再增大UCE对iB的影响很小,也即UCE>1V往后的输入特性与UCE=1V的一条特性曲线重合,所以,半导体器材手册中一般只给出一条UCE≥1V时的输入特性曲线,如图所示。输入特性曲线的数学表达式为:iB=f(uBE)| UCE = 常数。

4.2 输出特性曲线

        输出特性是指以基极电流IB为常数,输出电压uCE和输出电流iC之间的曲线,即:iC=f(uCE)|IB =常数。

        在放大区,集电极电流ic恒等于基极电流ib的倍,与电压uce无关。

        在饱和区,集电极电流ic会跟随着uce电压的增大而增大,近似为线性;放大区和饱和区的界限是三极管的饱和电压uces,当uce>uces时候便是放大区,该饱和电压还与基极电流ib成正比。

        在截止区,当ib=0的时候,三极管关断,几乎无电流的流进与流出,常常使用时该状态做电子开关使用。

        如何快速区分放大区和饱和区?(这个我常常记不住)

——答案就是,在放大区,集电极电流ic恒等于基极电流ib的倍,与电压uce无关,即此时Ic是一条横线。

5 三极管的主要参数(选型指导)

5.1 电流放大系数

        分直流和交流放大系数:

        直流也叫做静态电流放大系数,是在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用HFE或β表示。

        交流也叫动态电流放大系数,指在交流状态下的HFE或β。

5.2 耗散功率

        也叫集电极最大允许耗散功率PCM,是晶体管参数变化不超过规定允许值时的最大集电极耗散功率。它与晶体管的最高允许结温和集电极最大电流有密切关系,晶体管使用时,其实际耗散功率不允许超过PCM值,否则会造成晶体管因过载而损坏。

        PCM小于1W的叫小功率晶体管,1W<PCM<5W的叫中功率晶体管,大于5W的是大功率晶体管。

5.3 频率特性

        晶体管的放大系数和工作频率有关,如果超过了工作频率,则会出现放大能力减弱甚至失去放大作用。晶体管的频率特性主要包括特征频率FT和最高振荡频率FM等。

        特征频率:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作。

        fT称作增益带宽积,即fT=βfo。若已知当前三极管的工作频率fo以及高频电流放大倍数,便可得出特征频率fT。随着工作频率的升高,放大倍数会下降.fT也可以定义为β=1时的频率。

        小于或者等于3MHZ是低频管,大于或等于30MHZ是高频管,大于3MHZ小于30MHZ是中频管。

        最高振荡频率FM,只晶体管的功率增益降为1时所对应的频率,通常高频晶体管的最高振荡频率低于共基极截止频率Fa,而特征频率FT则高于共基极截止频率Fa,低于共集电极截止频率Fβ。

5.4 集电极最大电流Icm

        是晶体管集电极所允许通过的最大电流,当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至损坏。

5.5 最大反向电压

        指晶体管在工作时允许施加的最高工作电压,它包括集电极-发射极反向击穿电压、集电极-基极反向击穿电压和发射极-基极反向击穿电压。

        集电极-发射极反向击穿电压指晶体管基极开路时,集电极与发射极之间的最大允许反向电压,是集电极与发射极反向击穿电压,表示临界饱和时的饱和电压,用VCEO或者BVCEO表示。

        集电极-基极反向击穿电压,是发射极开路时,集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。

        发射极-基极反向击穿电压,指晶体管的集电极开路时,发射极与基极之间的最大允许反向电压,用VEBO或BVEBO表示。

5.6 反向电流

        包括集电极-基极之间的反向电流ICBO和集电极-发射极之间的反向击穿电流ICEO。

        ICBO也叫集电结反向漏电流,是当晶体管的发射极开路时,集电极与基极之间的反向电流,ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。

        ICEO是当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也叫穿透电流。此值越小,说明晶体管的性能越好。

5.7 其他参数

        Ibs:基极饱和导通电流;放大态,IB一定要小于使三极管饱和的电流。

6 应用

        三极管最常见的应用就是开关电路了,下图中的Rb1是下拉电阻,Rb1 在实际应用中非常重要,因为当三极管基极没有电压输入时,Rb1的存在可以确保基极是接地的,因此,这样做可以防止噪声误导通NPN晶体管。

        上面这个电路一定要注意下,Rb和Rc阻值的选择,因为如果选择不对,有可能会导致三极管处于放大,而不是饱和(开关)的状态的。

        具体如何算,参照下面这个表还有三极管规格书即可。

7 三极管典型电路分析

7.1 NPN三极管开关电路

        电路分析:上图为NPN型三极管,按下开关S1,约1mA的Ib流过箭头,三极管工作在饱和状态,c极到e极完全导通,c极电平接近0V(GND),负载RL两端压降接近5V;Ib与Ic电流都流入e极,根据电流方向,e极为低电平,应接地,c极接负载和电源。

        电路分析:对于NPN三极管,更应该在b极加一个下拉电阻,一是为了保证b、e极间电容加速放电,加快三极管截止;二是为了保证给三极管b极一个已知逻辑状态,防止控制输入端悬空或高阻态时对三极管工作状态的不确定。

7.2 PNP三极管开关电路

        电路分析:上图为PNP型三极管,按下开关S2,约1mA的Ib流过箭头,三极管工作在饱和状态,e极到c极完全导通,c极电平接近5V,负载RL两端压降接近5V;Ib与Ic电流都流出e极,根据电流方向,e极为高电平,应接电源,c极接负载和地。

        电路分析:对于PNP三极管,更应该在b极加一个上拉电阻,原理同NPN三极管。

7.3 NPN三极管驱动蜂鸣器

        电路分析:对于感性负载,必须在负载两端并联一个反向续流二极管,因为三极管在关断时,线圈会自感产生很高的反向电动势,而续流二极管提供的续流通路,同时钳位反向电动势,防止击穿三极管。续流二极管的选型必须是快恢复二极管或肖特基二极管,两者响应速度快。

7.4 NPN三极管驱动继电器

        电路分析:对于某些控制信号为低电平时,可能并不是真正的0V,一般在1V以内,为保证三极管完全截止,不得不在三极管b极加一个反向稳压管或正向二极管,以提高三极管导通的阈值电压。根据个人经验,推挽输出的数字信号不用加,OC输出、二极管输出以及延时控制有必要加,通常稳压管正常的工作电流≥1mA。

7.5 三极管实现继电器的延时控制

        电路分析:为三极管延时导通,快速关断的一个仿真电路,D1、R2、C1、D2构成延时导通Q2的回路,C1的电压为12V的时候Q2导通,R3、Q1、R4、R1构成快速关断Q2的回路,C1通过R3和Q1快速放电。

8 要点总结

  • 对于NPN三极管,在不考虑三极管的情况下,b极电阻与下拉电阻的分压必须大于0.7V,PNP同理。

  • b极电流必须≥1mA可保证三极管处于饱和状态,此时Ic满足三极管最大的驱动能力。

  • 另外,对于三极管的放大倍数β,指的是输出电流的驱动能力放大了β,比如100倍,并不是把输出电流真正的放大了100倍,切记!

  • 总之,晶体三极管是一种高效、稳定和可靠的半导体器件,它在电子工程中有着广泛的应用。其工作原理虽然看起来比较复杂,但对于电子工程师来说,了解其工作原理是必不可少的。

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐