众所周知,人脸识别是计算机视觉应用的一个重大领域,在学习人脸识别之前,我们先来简单学习下人脸检测的几种用法。

常见的人脸检测方法大致有5种,Haar、Hog、CNN、SSD、MTCNN:

注:本文章图片来源于网络

相关构造检测器的文件:opencv/data at master · opencv/opencv · GitHub

基本步骤

  1. 读入图片
  2. 构造检测器
  3. 获取检测结果
  4. 解析检测结果

一、Haar

# 调整参数
img = cv2.imread('./images/001.jpg')
cv_show('img',img)

# 构造harr检测器
face_detector = cv2.CascadeClassifier('./weights/haarcascade_frontalface_default.xml')

# 转为灰度图
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(img_gray,'gray')

# 检测结果 上图4个人脸所以4个方框坐标
# image  
# scaleFactor控制人脸尺寸  默认1.1 
detections = face_detector.detectMultiScale(img_gray,scaleFactor=1.3)

# 解析
for x,y,w,h in detections:
    cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0))
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

# 调整参数
img = cv2.imread('./images/004.jpeg')
cv_show('img',img)

# 构造harr检测器
face_detector = cv2.CascadeClassifier('./weights/haarcascade_frontalface_default.xml')

# 转为灰度图
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(img_gray,'gray')

# 检测结果 上图4个人脸所以4个方框坐标
# image  
# scaleFactor控制人脸尺寸  默认1.1 
# minNeighbors 确定一个人脸框至少要有n个候选值 越高 质量越好
# [, flags[, 
# minSize  maxSize 人脸框的最大最小尺寸 如minSize=(40,40) 
detections = face_detector.detectMultiScale(img_gray,scaleFactor=1.2, minNeighbors=10)# 在质量和数量上平衡

# 解析
for x,y,w,h in detections:
    cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0))
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

 

上述过程中:

  • scaleFactor参数:用来控制人脸框的大小,可以用它来排除一些错误检测; 
  • minNeighbors参数:我们给人脸框起来的时候,一般一张脸会框许多的框,假如这张脸框得越多,说明质量越好,越是一张正确的“脸”。

二、Hog

对于第一次使用这个功能的同学,要提前下载一下dlib。

import dlib

# 构造HOG人脸检测器 不需要参数
hog_face_detetor = dlib.get_frontal_face_detector()

# 检测人脸获取数据
# img 
# scale类似haar的scalFactor
detections = hog_face_detetor(img,1)

# 解析获取的数据
for face in detections:
    # 左上角
    x = face.left()
    y = face.top()
    # 右下角
    r = face.right()
    b = face.bottom()
    cv2.rectangle(img,(x,y),(r,b),(0,255,0))
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

 

三、CNN

import dlib

# 构造CNN人脸检测器
cnn_face_detector = dlib.cnn_face_detection_model_v1("./weights/mmod_human_face_detector.dat")

# 检测人脸  参数与上一种相似
detections = cnn_face_detector(img,1)

for face in detections:
    # 左上角
    x = face.rect.left()
    y = face.rect.top()
    # 右下角
    r = face.rect.right()
    b = face.rect.bottom()
    # 置信度
    c = face.confidence
    print(c)
    
    cv2.rectangle(img,(x,y),(r,b),(0,255,0))
    
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

通过神经网络完成,这个过程中我们还可以查看每张脸检测时的置信度。

 

四、SSD

# 加载模型
face_detector = cv2.dnn.readNetFromCaffe('./weights/deploy.prototxt.txt','./weights/res10_300x300_ssd_iter_140000.caffemodel')

# 原图尺寸
img_height = img.shape[0]
img_width = img.shape[1]

# 放缩至输入尺寸
img_resized = cv2.resize(img,(500,300)) 

# 转为2进制
img_blob = cv2.dnn.blobFromImage(img_resized,1.0,(500,300),(104.0,177.0,123.0))

# 输入
face_detector.setInput(img_blob)

# 推理
detections = face_detector.forward()

此时

detections.shape # (1, 1, 200, 7)

说明有200个结果,后面的7则是我们做需要的一些数据,继续如下:

# 查看人脸数量
num_of_detections = detections.shape[2]


img_copy = img.copy()

for index in range(num_of_detections):
    # 置信度
    detections_confidence = detections[0,0,index,2]
    # 通过置信度筛选
    if detections_confidence > 0.15:
        # 位置  乘以宽高恢复大小
        locations = detections[0,0,index,3:7] * np.array([img_width,img_height,img_width,img_height])
        # 打印
        print(detections_confidence)
     
        lx,ly,rx,ry = locations.astype('int')
        # 绘制
        cv2.rectangle(img_copy,(lx,ly),(rx,ry),(0,255,0),2)
        
plt.imshow(cv2.cvtColor(img_copy,cv2.COLOR_BGR2RGB))     

 

五、MTCNN

# 导入MTCNN
from mtcnn.mtcnn import MTCNN

# 记载模型
face_detetor = MTCNN()

# 检测人脸
detections = face_detetor.detect_faces(img_cvt)
for face in detections:
    x,y,w,h = face['box']
    cv2.rectangle(img_cvt,(x,y),(x+w,y+h),(0,255,0),2)
plt.imshow(img_cvt)

 

对比

优势劣势
Haar速度最快、清凉、适合算力较小的设备准确度低、偶尔误报、无旋转不变性
HOG+Dlib比Haar准确率高速度比Haar低,计算量大、无旋转不变性、Dlib兼容性问题
SSD比Haar和hog准确率高、深度学习、大小一般低光照片准确率低,受肤色影响。
CNN最准确、误报率低、轻量相对于其他方法慢、计算量大、Dlib兼容性问题

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐