一句话解释numpy.meshgrid()——生成网格点坐标矩阵
关键词:网格点坐标矩阵

网格点是什么?坐标矩阵又是什么鬼?
看个图就明白了:
这里写图片描述
图中,每个交叉点都是网格点,描述这些网格点的坐标的矩阵,就是坐标矩阵
再看个简单例子
这里写图片描述
A,B,C,D,E,F是6个网格点,坐标如图,如何用矩阵形式(坐标矩阵)来批量描述这些点的坐标呢?
答案如下:
X = [ 0 1 2 0 1 2 ] X= \left[ \begin{matrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{matrix} \right] X=[001122]
Y = [ 1 1 1 0 0 0 ] Y= \left[ \begin{matrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{matrix} \right] Y=[101010]
这就是坐标矩阵——横坐标矩阵 X X X中的每个元素,与纵坐标矩阵 Y Y Y中对应位置元素,共同构成一个点的完整坐标。如B点坐标 ( X 12 , Y 12 ) = ( 1 , 1 ) (X_{12},Y_{12})=(1,1) (X12,Y12)=(1,1)

下面可以自己用matplotlib来试一试,输出就是上边的图

import numpy as np
import matplotlib.pyplot as plt

x = np.array([[0, 1, 2], [0, 1, 2]])
y = np.array([[0, 0, 0], [1, 1, 1]])


plt.plot(x, y,
         color='red',  # 全部点设置为红色
         marker='.',  # 点的形状为圆点
         linestyle='')  # 线型为空,也即点与点之间不用线连接
plt.grid(True)
plt.show()

如果对matplotlib不熟悉,可能只知道用一列横坐标(线性代数中的1维列向量),一列纵坐标生成(两者元素个数相等)一些点。但是实际上,给matplotlib的坐标信息是矩阵也是可以的,只要横纵坐标的尺寸一样。都会按照对应关系生成点。
但是有需要注意的地方,按照矩阵给坐标点信息,matplotlib会把横坐标矩阵中每一列对应的点当做同一条线
举个例子,把上面的代码plotlinestyle=''删掉,或者变成linestyle='-'(这个操作把图的线型改为默认状态),就会发现A-D是连接的,B-E是连接的,C-F是连接的,也即,会认为你输入的是3条线,如图
这里写图片描述

作为练习,自己试着生成如下结果
提示:线型等关键字参数设置可用如下代码

plt.plot(x, y,
         marker='.',  # 点的形状为圆点
         markersize=10,  # 点设置大一点,看着清楚
         linestyle='-.')  # 线型为点划线

这里写图片描述

答案

import numpy as np
import matplotlib.pyplot as plt

x = np.array([[0, 1, 2, 3],
              [0, 1, 2, 3],
              [0, 1, 2, 3],
              [0, 1, 2, 3]])
y = np.array([[0, 0, 0, 0],
              [1, 1, 1, 1],
              [2, 2, 2, 2],
              [3, 3, 3, 3]])


plt.plot(x, y,
         marker='.',  # 点的形状为圆点
         markersize=10,  # 点设置大一点,看着清楚
         linestyle='-.')  # 线型为点划线
plt.grid(True)
plt.show()

到这里,网格点坐标矩阵的概念就解释清楚了。
那么问题来了,如果需要的图比较大,需要大量的网格点该怎么办呢?比如下面的这种
这里写图片描述
最直接但是最笨的方法,就是按照上面的方法把横纵坐标矩阵 X X X Y Y Y写出来,就像上面练习题中的
这里写图片描述
很明显,对于网格点很多的情况根本没法用。有啥好的办法吗?
有的,注意到我们练习题中的坐标矩阵,其实有大量的重复—— X X X的每一行都一样, Y Y Y的每一列都一样。基于这种强烈的规律性,numpy提供的numpy.meshgrid()函数可以让我们快速生成坐标矩阵 X X X Y Y Y

语法:X,Y = numpy.meshgrid(x, y)
输入的xy,就是网格点的横纵坐标列向量(非矩阵)
输出的XY,就是坐标矩阵

我们来试验一下:改写第一个例子中的代码,用numpy.meshgrid来实现。

import numpy as np
import matplotlib.pyplot as plt

x = np.array([0, 1, 2])
y = np.array([0, 1])

X, Y = np.meshgrid(x, y)
print(X)
print(Y)


plt.plot(X, Y,
         color='red',  # 全部点设置为红色
         marker='.',  # 点的形状为圆点
         linestyle='')  # 线型为空,也即点与点之间不用线连接
plt.grid(True)
plt.show()
# 从输出的结果来看,两种方法生成的坐标矩阵一毛一样。
[[0 1 2]
 [0 1 2]]
[[0 0 0]
 [1 1 1]]

这里写图片描述

最后给出上面这个图的代码
这里写图片描述

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,1000,20)
y = np.linspace(0,500,20)

X,Y = np.meshgrid(x, y)

plt.plot(X, Y,
         color='limegreen',  # 设置颜色为limegreen
         marker='.',  # 设置点类型为圆点
         linestyle='')  # 设置线型为空,也即没有线连接点
plt.grid(True)
plt.show()

参考文献
https://www.cnblogs.com/black-mamba/p/9186965.html


留下您的评论,我可以做得更好!
S e l f - D i s c i p l i n e    a n d    S o c i a l    C o m m i t m e n t Self\text{-}Discipline \ \ and \ \ Social \ \ Commitment Self-Discipline  and  Social  Commitment

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐