一、分组原理

核心:

1、不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。

2、默认axis=0按行分组,可指定axis=1对列分组。

groupby()语法格式

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, group_keys=True, squeeze=False,  observed=False, **kwargs)

groupby原理

groupby就是按XX分组,比如将一个数据集按A进行分组,效果如下

使用groupby实现功能

import numpy as np
import pandas as pd

data = pd.DataFrame({
    'name': ['Tom', 'Kaggle', 'Litter', 'Sam', 'Sam', 'Sam'],
    'race': ['B', 'C', 'D', 'E', 'B', 'C'],
    'age': [37.0, 61.0, 56.0, 87.0, 58.0, 34.0],
    'signs_of_mental_illness': [True, True, False, False, False, False]
})

data.groupby('race')

 返回结果如上  得到一个叫DataFrameGroupBy的东西,pandas不能直接显示出来 可以调用list显示出来

groupby()的配合函数
函数 适用场景备注
.mean()均值
.count()计数
.min()最小值
.mean().unstack()求均值,聚合表的层次索引不堆叠
.size()计算分组大小GroupBy的size方法,将返回一个含有分组大小的Series
.apply()
.agg()

这里演示.mean().count()

# mean()
data.groupby('name')['age'].mean()
# count()
data.groupby('name')['age'].count()
data.groupby('age').count()

 也可以根据单键多列进行聚合

# 单键多列聚合
data.groupby('name')[['race','age',]].count()

 .agg操作 可以取多个函数进行选择 有时候我们既需要平均值,有需要计数(也可是取一个)

agg为列表

print(data.groupby('name')['age'].agg(['mean']))

print(data.groupby('name')['age'].agg(['mean','count']))

也可以传入字典,对组内不同列采取不同的操作

print(data.groupby('race').agg({'age': np.median, 'signs_of_mental_illness': np.mean}))

.apply()

可以使用我们自己所创建的函数

print('apply之前')
grouped = data.groupby('name')
for name, group in grouped:
    print(name)
    print(group)
print('\n')
print('apply之后')
print(data.groupby('name').apply(lambda x: x.head(2)))

 简单操作基本介绍完成

有时候需要将聚合的另一列放到一起 并且取消键的重复值 这个时候可以这样做

上面是构建的数据,需要对订购时间进行处理,这里我们是将月份+天数/30,然后对ID列进行去重,并将后面Time列计算的结果放到一起

import numpy as np
import pandas as pd


data = pd.read_excel('订购时间预测2.xlsx')
def cut_m_d(x):
	return round(x.month + x.day / 30, 2)

data['m_d'] = data['Time'].apply(cut_m_d)
grouped = data.groupby('ID')
# 这一步是去重(ID),不去重会出现错误
result = grouped['m_d'].unique()
result2 = result.reset_index()
print(result2)

 后续将进行更复杂操作的更新

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐