在操作矩阵的时候,不同的接口对于矩阵的输入维度要求不同,输入可能为1-D,2-D,3-D等等。下面介绍一下使用Numpy进行矩阵维度变更的相关方法。主要包括以下几种:

1、np.newaxis扩充矩阵维度

2、np.expand_dims扩充矩阵维度

3、np.squeeze删除矩阵中维度大小为1的维度


np.newaxis,np.expand_dims扩充矩阵维度:

import numpy as np

x = np.arange(8).reshape(2, 4)
print(x.shape)

# 添加第0维,输出shape -> (1, 2, 4)
x1 = x[np.newaxis, :]
print(x1.shape)

# 添加第1维, 输出shape -> (2, 1, 4)
x2 = np.expand_dims(x, axis=1)
print(x2.shape)

输出结果:

(2, 4)
(1, 2, 4)
(2, 1, 4)

np.squeeze降低矩阵维度:

"""
    squeeze 函数:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
    用法:numpy.squeeze(a,axis = None)
     1)a表示输入的数组;
     2)axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
     3)axis的取值可为None 或 int 或 tuple of ints, 可选。若axis为空,则删除所有单维度的条目;
     4)返回值:数组
     5) 不会修改原数组;
"""


import numpy as np

print("#" * 40, "原始数据", "#" * 40)
x = np.arange(10).reshape(1, 1, 10, 1)
print(x.shape)
print(x)

print("#" * 40, "去掉axis=0这个维度", "#" * 40)
x_squeeze_0 = np.squeeze(x, axis=0)
print(x_squeeze_0.shape, x_squeeze_0)

print("#" * 40, "去掉axis=3这个维度", "#" * 40)
x_squeeze_3 = np.squeeze(x, axis=3)
print(x_squeeze_3.shape, x_squeeze_3)

print("#" * 40, "去掉axis=0, axis=1这两个维度", "#" * 40)
x_squeeze_0_1 = np.squeeze(x, axis=(0, 1))
print(x_squeeze_0_1.shape, x_squeeze_0_1)

print("#" * 40, "去掉所有1维的维度", "#" * 40)
x_squeeze = np.squeeze(x)
print(x_squeeze.shape, x_squeeze)

print("#" * 40, "去掉不是1维的维度,抛异常", "#" * 40)
try:
    x_squeeze = np.squeeze(x, axis=2)
    print(x_squeeze.shape, x_squeeze)
except Exception as e:
    print(e)

输出结果:

######################################## 原始数据 ########################################
(1, 1, 10, 1)
[[[[0]
   [1]
   [2]
   [3]
   [4]
   [5]
   [6]
   [7]
   [8]
   [9]]]]
######################################## 去掉axis=0这个维度 ########################################
(1, 10, 1) [[[0]
  [1]
  [2]
  [3]
  [4]
  [5]
  [6]
  [7]
  [8]
  [9]]]
######################################## 去掉axis=3这个维度 ########################################
(1, 1, 10) [[[0 1 2 3 4 5 6 7 8 9]]]
######################################## 去掉axis=0, axis=1这两个维度 ########################################
(10, 1) [[0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]]
######################################## 去掉所有1维的维度 ########################################
(10,) [0 1 2 3 4 5 6 7 8 9]
######################################## 去掉不是1维的维度,抛异常 ########################################
cannot select an axis to squeeze out which has size not equal to one

参考链接

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐