1、概述

  • DETR,全称为Detection Transformer,是Facebook在ECCV2020上提出的基于Transformer的端到端目标检测网络
  • 最大的特点就是:不需要预定义的先验anchor,也不需要NMS的后处理策略,就可以实现端到端的目标检测。
  • 但是,DETR大目标检测上性能是最好的,而小目标上稍差,而且基于match的loss导致学习很难收敛(即难以学习到最优的情况)。
  • DETR的总体框架如下,先通过CNN提取图像的特征;再送入到transformer encoder-decoder中,该编码器解码器的结构基本与transformer相同,主要是在输入部分和输出部分的修改;最后得到类别和bbox的预测,并通过二分匹配计算损失来优化网络。
    在这里插入图片描述

2、transformer的基本结构

  • DETR其实基本遵循了transformer的encoder-decoder结构,如下:
  • encoder-decoder的基本流程为:

1)对于输入,首先进行embedding操作,即将输入映射为向量的形式,包含两部分操作,第一部分是input embedding:例如,在NLP领域,称为token embedding,即将输入序列中的token(如单词或字符)映射为连续的向量表示;在CV领域,可以是将每个像素或者每个patch块映射为向量形式,例如,patch embedding层
2)另一个embedding操作为positional encoding:即位置编码,即一组与输入经过embedding操作后的向量相同维度的向量(例如都为[N, HW, C]),用于提供位置信息。位置编码与input embedding相加得到transformer 编码器的输入。
3)transformer encoder:是由多个编码模块组成的编码器层,每个编码模块由多头自注意力机制+残差add+层归一化LayerNorm+前馈网络FFN+残差add+层归一化LayerNorm组成

多头自注意力机制:核心部分,例如,在CV领域,经过embedding层后的输入为[N, HW, C],N为Batch num,HW为像素个数,每个像素映射为一个维度为C的向量;然后通过QKV的自注意力机制和划分为多头的方式,得到输出为[N, HW, C]:

要除以 d k \sqrt{d_k} dk 的原因:查询(Query)与键(Key)之间的点积,然后将这个点积除以一个缩放因子,最后应用softmax函数来获得注意力权重。如果不进行缩放,当键的维度dk很大时,点积的结果可能会非常大,这会导致softmax函数的梯度非常小,从而引起梯度消失问题。通过除以根号dk,提高训练的稳定性。

add+LayerNorm:经过多头自注意力机制后再与输入相加,并经过层归一化LayerNorm,即在最后一个维度C上做归一化,详见https://blog.csdn.net/m0_48086806/article/details/132153059
前馈网络FFN:是由两个全连接层+ReLu激活函数组成

4)transformer decoder:是由多个解码模块组成的解码器层,每个解码模块由Masked多头自注意力机制+残差add&层归一化LayerNorm+多头cross attention机制+add&LayerNorm+前馈网络FFN+add&LayerNorm
5)此外需要注意的是,第一个解码模块的输入为output(可以初始化为0或者随机初始化)经过embedding操作后的结果,之后各个解码模块的输入就变为前一个解码模块的输出了;第二个cross attention机制的QKV输入分别为:KV键值对都是等于编码器最终的输出;Query为Masked多头自注意力的输出

Masked多头自注意力机制:一个通俗解释为:一个词序列中,每个词只能被它前面的词所影响,所以这个词后面的所有位置都需要被忽略,所以在计算Attention的时候,该词向量和它后面的词向量的相关性为0。因此为Mask

6)最后通过Linear层+Softmax得到最终的输出

在这里插入图片描述
在这里插入图片描述

3、DETR详解

  • DETR基本结构如下:简单来说,就是通过CNN提取图像特征(通常 Backbone 的输出通道为 2048,图像高和宽都变为了 1/32),并经过input embedding+positional encoding操作转换为图像序列(如下图所说,就是类似[N, HW, C]的序列)作为transformer encoder的输入,得到了编码后的图像序列,在图像序列的帮助下,将object queries(下图中说的是固定数量的可学习的位置embeddings)转换/预测为固定数量的类别+bbox预测。也就是说Transformer本质上起了一个序列转换的作用。
    在这里插入图片描述
  • DETR的详细结构如下:
    在这里插入图片描述
  • DETR中的encoder-decoder中与transformer的区别有

1)spatial positional encoding:新提出的二维空间位置编码方法,该位置编码分别被加入到了encoder的self attention的QK和decoder的cross attention的K,同时object queries也被加入到了decoder的两个attention(第一个加到了QK中,第二个加入了Q)中。而原版的Transformer将位置编码加到了input和output embedding中。
2)DETR在计算attention的时候没有使用masked attention,因为将特征图展开成一维以后,所有像素都可能是互相关联的,因此没必要规定mask。
3)object queries的转换过程:object queries是预定义的目标查询的个数,代码中默认为100。它的意义是:根据Encoder编码的特征,Decoder将100个查询转化成100个目标,即最终预测这100个目标的类别和bbox位置。最终预测得到的shape应该为[N, 100, C],N为Batch Num,100个目标,C为预测的100个目标的类别数+1(背景类)以及bbox位置(4个值)。
4)得到预测结果以后,将object predictions和ground truth box之间通过匈牙利算法进行二分匹配:假如有K个目标,那么100个object predictions中就会有K个能够匹配到这K个ground truth,其他的都会和“no object”匹配成功,使其在理论上每个object query都有唯一匹配的目标,不会存在重叠,所以DETR不需要nms进行后处理。
5)分类loss采用的是交叉熵损失,针对所有predictions;bbox loss采用了L1 loss和giou loss,针对匹配成功的predictions

注意,匈牙利算法是用于解决二分图匹配的问题,即将Ground Truth的K个bbox和预测出的100个bbox作为二分图的两个集合,匈牙利算法的目标就是找到最大匹配,即在二分图中最多能找到多少条没有公共端点的边。匈牙利算法的输入就是每条边的cost 矩阵
在这里插入图片描述

  • 推理的大致流程如下:
    在这里插入图片描述
  • 此外,DETR 对大物体更好是因为在 Backbone 最后输出特征图上进行 Self-Attention。可以结合FPN实现多尺度的检测。
  • 最后引用链接中的一段话进行总结:

Backbone 输出的特征图经过 1 × 1 卷积后进行降维,得到的是 d × H × W,被 reshape 成 d × H W 作为 Transformer Block 的输入。在 Encoder 阶段,会计算 H W × H W的 Attention Matrix,那么其实 Attention Matrix 上每一个值,其实就是考虑了 Backbone 输出的特征图空间上的两个点,因为 token 数量和特征图空间像素个数一样,那么这两个点,其实就已经构建出来了一个 box(左上角和右下角)。从这个角度来看,神经网络在基于 Attention Matrix 进行思考时,其实也可以从某种意义上就是在对一个个 bounding box 进行思考,这对于目标检测任务似乎是非常利好的。

参考链接:https://blog.csdn.net/qq_53250079/article/details/127457575
https://blog.csdn.net/baidu_36913330/article/details/120495817

GitHub 加速计划 / tra / transformers
130.24 K
25.88 K
下载
huggingface/transformers: 是一个基于 Python 的自然语言处理库,它使用了 PostgreSQL 数据库存储数据。适合用于自然语言处理任务的开发和实现,特别是对于需要使用 Python 和 PostgreSQL 数据库的场景。特点是自然语言处理库、Python、PostgreSQL 数据库。
最近提交(Master分支:3 个月前 )
4e90b99e * Create modular_starcoder2.py * Update modular_starcoder2.py * update * finalize modular * revert # no-unravel * Add support * style * Update modular_model_converter.py * update docstring 17 小时前
18871599 * fix heuristic schedule * fix style * fix format 17 小时前
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐