使用pytorch的dataloader报错:RuntimeError: stack expects each tensor to be equal size, but got [2] at entry 0 and [1] at entry 1

1. 问题描述

报错定位:位于定义dataset的代码中

def __getitem__(self, index):
	...
	return y    #此处报错

报错内容:

  File "D:\python\lib\site-packages\torch\utils\data\_utils\collate.py", line 55, in default_collate
    return torch.stack(batch, 0, out=out)
RuntimeError: stack expects each tensor to be equal size, but got [2] at entry 0 and [1] at entry 1

把前一行的报错带上能够更清楚地明白问题在哪里.

2.问题分析

从报错可以看到,是在代码中执行torch.stack时发生了报错.因此必须要明白在哪里执行了stack操作.
通过调试可以发现,在通过loader加载一个batch数据的时候,是通过每一次给一个随机的index取出相应的向量.那么最终要形成一个batch的数据就必须要进行拼接操作,而torch.stack就是进行这里所说的拼接.
再来看看具体报的什么错: 说是stack的向量维度不同. 这说明在每次给出一个随机的index,返回的y向量的维度应该是相同的,而我们这里是不同的.
这样解决方法也就明确了:使返回的向量y的维度固定下来.

3.问题出处

为什么我会出现这样的一个问题,是因为我的特征向量中存在multi-hot特征.而为了节省空间,我是用一个列表存储这个特征的.示例如下:

feature=[[1,3,5],
		[0,2],
		[1,2,5,8]]

这就导致了我每次返回的向量的维度是不同的.因此可以采用向量补全的方法,把不同长度的向量补全成等长的.

	# 把所有向量的长度都补为6
	multi = np.pad(multi, (0, 6-multi.shape[0]), 'constant', constant_values=(0, -1))

4.总结

  • 在构建dataset重写的__getitem__方法中要返回相同长度的tensor.
  • 可以使用向量补全的方法来解决这个问题.
Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐