Python学习:numpy库 数据量太大出现Memory Error问题的解决方法汇总
python处理大训练集过程中经常会遇到的Memory Error问题
这里看了几位博主的解决方案进行了整理,感谢分享!
http://chenqx.github.io/2014/10/29/Python-fastest-way-to-read-a-large-file/
https://blog.csdn.net/weixin_39750084/article/details/81501395
https://blog.csdn.net/yimingsilence/article/details/79717768
python处理大数据集时容易出现内存错误也就是内存不够用。
1、退而求其之,放弃过高精度
python原始的数据类型占用空间比较大,且没有太多的选择,默认一般好像是24字节,但是实际有时候不需要这么大或这么高精度,这时候可以使用numpy中的float32, float16等,总之根据自己的需要选够用就行,这就是好几倍的内存节省。
2、更新python库为64位,更新Pandas和Numpy库为64位
python 32bit 最大只能使用 2G 内存,坑爹之处,超过 2G 报错MemoryError。
如果你的Python用的是32位的,那么你的pandas和Numpy也只能是32位的,那么当你的内存使用超过2G时,就会自动终止内存。而 64bit python则无此限制,所以建议使用 64bit python。
解决方法就是:先检查一下你的python是多少位的,在shell中输入python,查看位数,如果是32位,那么就重装Python,装一个64位的,但同时你的库也需要重新装了。
如果你的python本来安装的就是64位的,莫急,接着往下读。
3、扩充虚拟内存
我在运行代码的过程中发现,出现memory error错误的时候,其实我的内存只用到了40+%,所以其实不太可能会出现这个错误啊,所以我查了下,发现有说是内存被限制了,考虑关掉一些可能限制内存的软件啦,扩大虚拟内存啦,这些的。
扩大虚拟内存的方法(我的系统是win8,不过应该都大同小异):
1、打开 控制面板;
2、找到 系统 这一项;
3、找到 高级系统设置 这一项;
4、点击 性能 模块的 设置 按钮;
5、选择 高级面板,在 虚拟内存 模块点击更改;
6、记得 不要 选中“自动管理所有驱动器的分页文件大小”,然后选择一个驱动器,也就是一个盘,选中自定义大小,手动输入初始大小和最大值,当然,最好不要太大,更改之后能在查看盘的使用情况,不要丢掉太多空间。
7、都设置好之后,记得点击 “设置”, 然后再确定,否则无效,最后 重启电脑 就可以了。
我在出现Memory Error情况是就用这一步解决问题的!
4、运用两种比较快Large File Reading 的方法
最近处理文本文档时(文件约2GB大小),出现memoryError错误和文件读取太慢的问题,后来找到了两种比较快Large File Reading 的方法,本文将介绍这两种读取方法。
4.1 Preliminary(准备)
我们谈到“文本处理”时,我们通常是指处理的内容。Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法:.read()
、.readline()
和 .readlines()
。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read()
每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。下面是read()
方法示例:
try:
f = open('/path/to/file', 'r')
print f.read()
finally:
if f:
f.close()
调用read()
会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)方法,每次最多读取size个字节的内容。另外,调用readline()
可以每次读取一行内容,调用readlines()
一次读取所有内容并按行返回list。因此,要根据需要决定怎么调用。
如果文件很小,read()
一次性读取最方便;如果不能确定文件大小,反复调用read(size)
比较保险;如果是配置文件,调用readlines()
最方便:
for line in f.readlines():
process(line) # <do something with line>
4.2 Read In Chunks(读入块)
处理大文件是很容易想到的就是将大文件分割成若干小文件处理,处理完每个小文件后释放该部分内存。这里用了 iter & yield
:
def read_in_chunks(filePath, chunk_size=1024*1024):
"""
Lazy function (generator) to read a file piece by piece.
Default chunk size: 1M
You can set your own chunk size
"""
file_object = open(filePath)
while True:
chunk_data = file_object.read(chunk_size)
if not chunk_data:
break
yield chunk_data
if __name__ == "__main__":
filePath = './path/filename'
for chunk in read_in_chunks(filePath):
process(chunk) # <do something with chunk>
4.3 Using with open()
with
语句打开和关闭文件,包括抛出一个内部块异常。for line in f
文件对象f
视为一个迭代器,会自动的采用缓冲IO
和内存管理,所以你不必担心大文件。
#If the file is line based
with open(...) as f:
for line in f:
process(line) # <do something with line>
4.4 Conclusion
在使用python进行大文件读取时,应该让系统来处理,使用最简单的方式,交给解释器,就管好自己的工作就行了。
5、使用python的gc
模块
python的垃圾回收机制比较懒惰,有时候在一个for
循环中的变量用完不会回收,下次重新初始化的时候又重新开辟了空间,这时候可以手动del
这个变量,del x
,然后import gc
, 然后手动gc.collect()
这个方案具体我没有实施过,想尝试的小伙伴可以好好了解一下gc
模块
6、逐行读取
如果你用pd.read_csv
来读文件,会一次性把数据都读到内存里来,导致内存爆掉,那么一个想法就是一行一行地读它,代码如下:
data = []
with open(path, 'r',encoding='gbk',errors='ignore') as f:
for line in f:
data.append(line.split(','))
data = pd.DataFrame(data[0:100])
这就是先用with open把csv的每一行读成一个字符串,然后因为csv都是靠逗号分隔符来分割每列的数据的,那么通过逗号分割就可以把这些列都分离开了,然后把每一行的list都放到一个list中,形成二维数组,再转换成DataFrame。
这个方法有一些问题,首先读进来之后索引和列名都需要重新调整,其次很多数字的类型都发生了变化,变成了字符串,最后是最后一列会把换行符包含进去,需要用replace替换掉。
7、巧用pandas中read_csv
的块读取功能
pandas
设计时应该是早就考虑到了这些可能存在的问题,所以在read功能中设计了块读取的功能,也就是不会一次性把所有的数据都放到内存中来,而是分块读到内存中,最后再将块合并到一起,形成一个完整的DataFrame
。
f = open(path)
data = pd.read_csv(path, sep=',',engine = 'python',iterator=True)
loop = True
chunkSize = 1000
chunks = []
index=0
while loop:
try:
print(index)
chunk = data.get_chunk(chunkSize)
chunks.append(chunk)
index+=1
except StopIteration:
loop = False
print("Iteration is stopped.")
print('开始合并')
data = pd.concat(chunks, ignore_index= True)
以上代码规定用迭代器分块读取,并规定了每一块的大小,即chunkSize,这是指定每个块包含的行数。
这个方法能够保持数据的类型,也不需要自己费心思去调整列名和index,比较方便。
8、最后祝大家的代码永不报错!
博客记录日常学习~再次感谢各位博主的分享!
更多推荐
所有评论(0)