关系数据库理论之最小函数依赖集
前言
在本文中,会介绍为什么要引入最小函数依赖集,最小函数依赖集是什么,以及如何求最小函数依赖集。
为什么需要最小函数依赖集
在关系数据模型中,一个关系通常由R(U,F)构成,U为属性的全集,F为函数依赖集。在实际生活中,我们可以根据语义来定义关系中属性的依赖关系,例如学号可以唯一确定一位学生的姓名、性别等等。但是,有时候给出的函数依赖集并不是最简的,这有时会拖累我们对关系的后续处理,例如关系的分解、判断是否为无损分解等。所以,我们在必要时,需要对函数依赖集进行化简,这就是需要最小函数依赖集的原因。
在正式介绍最小函数依赖集之前,还需要了解一个概念,那就是闭包。准确的说是属性集X关于函数依赖集F的闭包。
闭包
闭包分为两种,一种是函数依赖集F的闭包,另外一种是属性集X关于函数依赖集F的闭包。前者不做讨论,重点说说后者。先来看定义
设F为属性集U上的一组函数依赖集,X、Y ∈ \in ∈U, X F + X_F^+ XF+= {A|X → \rightarrow →A能由F根据Armstrong公理导出}, X F + X_F^+ XF+称为属性集X关于函数依赖集F的闭包。
说白了,就是给定属性集X,根据现有的函数依赖集,看其能推出什么属性。
这里的Armstrong公理系统不用深究,想具体了解的可以点击查看百度百科。
举例:
已知关系模式R<U,F>,其中:
U = {A,B,C,D,E},
F = {AB → \rightarrow → C,B → \rightarrow →D,C → \rightarrow →E,EC → \rightarrow →B,AC → \rightarrow →B}
求 ( A B ) F + (AB)_F^+ (AB)F+。
解:
从AB出发,此时我们的集合里已经包含了{A,B}。
我们从现有的函数依赖集中可知,
AB可以推出C,于是C加入集合,
B可以推出D,于是D加入集合,
C可以推出E,于是E加入集合,
EC可以推出B,因为C、E、B都在集合中,于是不加入,
AC可以推出B,因为A、B、C都在集合中,于是不加入
至此,可求得 ( A B ) F + (AB)_F^+ (AB)F+ ={A、B、C、D、E}。
最小函数依赖集
定义
如果函数依赖集F满足下列条件,则称F为一个极小函数依赖集,亦称为最小依赖集或最小覆盖。
(1)、F中任一函数依赖右部仅含有一个属性。
(2)、F中不存在这样的函数依赖 X → \rightarrow →A,使得F与F-{X → \rightarrow →A} 等价。
(3)、F中不存在这样的函数依赖X → \rightarrow →A,X有真子集Z使得F-{X → \rightarrow →A} ⋃ \bigcup ⋃{Z → \rightarrow →A} 与F等价。
解释
以上定义翻译成大白话就是,一个函数依赖集F要想称为最小函数依赖集,要满足以下三点:
1、F中任一函数依赖的右边只有一个属性。
2、F中不存在这样的函数依赖:从现有的函数依赖集中删除一个函数依赖X
→
\rightarrow
→A,删除后所得的函数依赖集与原来的函数依赖集等价,这样的函数依赖是不允许存在的。
3、F中不存在这样的函数依赖:假设函数依赖集中存在AB
→
\rightarrow
→Y,现对该依赖的左部进行化简,即删除A,得B
→
\rightarrow
→Y;或删除B,得A
→
\rightarrow
→Y,若经过化简后的函数依赖集与没有化简前的函数依赖集等价,那么这样的函数依赖是不允许存在的。
算法
1、首先,先利用函数依赖的分解性,将函数依赖集中右部不为单个属性的分解为单属性。
2、对于经过第1步筛选后的函数依赖集F中的每一个函数依赖X → \rightarrow →A,进行以下操作:
- 2.1、将X → \rightarrow →A从函数依赖中剔除
- 2.2、基于剔除后的函数依赖,计算属性X的闭包,看其是否包含了A,若是,则该函数依赖是多余的(这里体现出前面说的等价,因为如果基于化简后的函数依赖依赖,计算X的闭包依然包含A,则说明A可以由其他依赖推出,X → \rightarrow →A不是必须的),可以删除,否则不能删除
3、对于经过第2步筛选后的函数依赖集F中每个左部不为单个属性的函数依赖AB
→
\rightarrow
→Y,进行以下操作:
我们约定,经过第二步筛选后的函数依赖集记为F1,经过第三步处理后的函数依赖集为F2。
- 3.1、去除A,得B → \rightarrow →Y,得F2,基于F1和F2计算属性B的闭包,如果二者相等,则说明它们是等价的,A可以去除;如果不相等,则A不能去除。
- 3.2、去除B,得A → \rightarrow →Y,得F2,基于F1和F2计算属性A的闭包,如果二者相等则说明它们是等价的,B可以去除;如果不相等,则B不能去除。
知识链接:函数依赖的分解性
若X → \rightarrow →YZ,则X → \rightarrow →Y 且 X → \rightarrow →Z。
举例
关系模式R(U,F)中,U={A,B,C,D,E,G},F={B → \rightarrow →D,DG → \rightarrow →C,BD → \rightarrow →E,AG → \rightarrow →B,ADG → \rightarrow →BC};求F的最小函数依赖集。
解:
1、首先根据函数依赖的分解性,对F进行第一次筛选,需要变动的有:
ADG
→
\rightarrow
→BC拆解成ADG
→
\rightarrow
→B、ADG
→
\rightarrow
→C
得新函数依赖集:
F = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,BD
→
\rightarrow
→E,AG
→
\rightarrow
→B,ADG
→
\rightarrow
→B,ADG
→
\rightarrow
→C}
2、筛选多余的函数依赖
- 2.1:去除B → \rightarrow →D,得F = {DG → \rightarrow →C,BD → \rightarrow →E,AG → \rightarrow →B,ADG → \rightarrow →B,ADG → \rightarrow →C}, B F + B_F^+ BF+ = {B},不包含D,故B → \rightarrow →D不删除。
- 2.2:去除DG → \rightarrow →C,得F = {B → \rightarrow →D、BD → \rightarrow →E,AG → \rightarrow →B,ADG → \rightarrow →B,ADG → \rightarrow →C}, ( D G ) F + (DG)_F^+ (DG)F+={D,G},不包含C,故DG → \rightarrow →C不删除。
- 2.3:去除BD → \rightarrow →E,得F = {B → \rightarrow →D,DG → \rightarrow →C,AG → \rightarrow →B,ADG → \rightarrow →B,ADG → \rightarrow →C}, ( B D ) F + (BD)_F^+ (BD)F+ = {B,D},不包含E,故BD → \rightarrow →E不删除。
- 2.4:去除AG → \rightarrow →B,得F = {B → \rightarrow →D,DG → \rightarrow →C,BD → \rightarrow →E,ADG → \rightarrow →B,ADG → \rightarrow →C}, ( A G ) F + (AG)_F^+ (AG)F+ = {A,G},不包含B,故AG → \rightarrow →B不删除。
- 2.5:去除ADG → \rightarrow →B,得F = {B → \rightarrow →D,DG → \rightarrow →C,BD → \rightarrow →E,AG → \rightarrow →B,ADG → \rightarrow →C}, ( A D G ) F + (ADG)_F^+ (ADG)F+ = {A,D,G,C,B,E},包含B,故ADG → \rightarrow →B去除。
- 2.6:去除ADG
→
\rightarrow
→C,得F = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,BD
→
\rightarrow
→E,AG
→
\rightarrow
→B,ADG
→
\rightarrow
→B},
(
A
D
G
)
F
+
(ADG)_F^+
(ADG)F+ = {A,D,G,C,B,E},包含C,故ADG
→
\rightarrow
→C去除。
经过第二部筛选后,函数依赖集F变为{B → \rightarrow →D,DG → \rightarrow →C,BD → \rightarrow →E,AG → \rightarrow →B}。
3、化简函数依赖左侧不为单个属性的函数依赖
- 3.1:先看DG
→
\rightarrow
→C
- 3.1.1:去除D,得G
→
\rightarrow
→C,得函数依赖集F1 = {B
→
\rightarrow
→D,G
→
\rightarrow
→C,BD
→
\rightarrow
→E,AG
→
\rightarrow
→B}。
基于F1,可求得 G F + G_F^+ GF+ = {G,C}。
基于F(第二步求出的,下同),可求得 G F + G_F^+ GF+ = {G}
可见二者并不相同,所以D不去除。 - 3.1.2:去除G,得D
→
\rightarrow
→C,得函数依赖集F1 = {B
→
\rightarrow
→D,D
→
\rightarrow
→C,BD
→
\rightarrow
→E,AG
→
\rightarrow
→B}
基于F1,可求得 D F + D_F^+ DF+ = {D,C}
基于F,可求得 D F + D_F^+ DF+ ={D}
可见二者并不相同,所以G不去除。
- 3.1.1:去除D,得G
→
\rightarrow
→C,得函数依赖集F1 = {B
→
\rightarrow
→D,G
→
\rightarrow
→C,BD
→
\rightarrow
→E,AG
→
\rightarrow
→B}。
综上,DG → \rightarrow →C,已是最简。
- 3.2:再看BD
→
\rightarrow
→E
- 3.2.1:去除B,得D
→
\rightarrow
→E,得函数依赖集F1 = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,D
→
\rightarrow
→E,AG
→
\rightarrow
→B}
基于F1,可求得 D F + D_F^+ DF+ = {D,E}
基于F,可求得 D F + D_F^+ DF+ = {D}
可见二者并不相同,所以B不去除。 - 3.2.2:去除D,得B
→
\rightarrow
→E,得函数依赖集F1 = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,B
→
\rightarrow
→E,AG
→
\rightarrow
→B}
基于F1,可求得 B F + B_F^+ BF+ = {B,E,D}
基于F,可求得 B F + B_F^+ BF+ = {B,D,E}
可见二者相同,所以D可以去除。
- 3.2.1:去除B,得D
→
\rightarrow
→E,得函数依赖集F1 = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,D
→
\rightarrow
→E,AG
→
\rightarrow
→B}
综上,BD → \rightarrow →E,可化简为B → \rightarrow →E。
- 3.3:最后看AG
→
\rightarrow
→B
- 3.3.1:去除A,得G
→
\rightarrow
→B,得函数依赖集F1 = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,B
→
\rightarrow
→E,G
→
\rightarrow
→B}
基于F1,可求得 G F + G_F^+ GF+ = {G,B}
基于F,可求得 G F + G_F^+ GF+ = {G}
可见二者并不相同,所以A不可去除。 - 3.3.2:去除G,得A
→
\rightarrow
→B,得函数依赖F1 = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,B
→
\rightarrow
→E,A
→
\rightarrow
→B}
基于F1,可求得 A F + A_F^+ AF+ = {A,B}
基于F,可求得 A F + A_F^+ AF+ = {A}
可见二者并不相同,所以G不可去除。
- 3.3.1:去除A,得G
→
\rightarrow
→B,得函数依赖集F1 = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,B
→
\rightarrow
→E,G
→
\rightarrow
→B}
综上,AG
→
\rightarrow
→B,已是最简。
综上,R的最小函数依赖集为F = {B
→
\rightarrow
→D,DG
→
\rightarrow
→C,B
→
\rightarrow
→E,AG
→
\rightarrow
→B}
写在最后
这个问题是我在考研复试的时候复习过程中遇到的,主要的纠结点在于第三步的判断上,查资料的时候发现网上很多都没有写清,最后还是在度娘的文库里找到了比较清楚的解释,在此做一下思路的整理。
本文定义以及例子参考自:
- 《数据库系统概论(第五版)》 王珊 萨师煊 编著 清华大学出版社
- CSDN 博文 数据库建模和设计(2):函数依赖、闭包、最小函数依赖集、范式、模式分解
更多推荐
所有评论(0)