一、数据信息

使用stata自带的auto数据,
被解释变量(因变量):price(价格)
解释变量(自变量):mpg(里程)、rep78(1978年后的修理记录)、weight(重量)、length(长度)、foreign(本土/国外品牌)
在这里插入图片描述
回归结果分两部分,上半部分为回归结果的总体描述信息,下半部分为具体变量信息。

二、指标

1.上半部分

指标 英文 名称 解释
SS sum of squares 平方和
df degrees of freedom 自由度
MS mean square 均方差
Model(SSM) sum of squares model 模型平方和 衡量预测值的离散程度
Residual(SSR) sum of squares residual 残差平方和 衡量预测值与真实值的偏差程度
Total(SST) sum of squares total 总平方和 衡量真实数据的离散程度
Number of obs 观测值数量 观测值数量
F(a,b) F值 检验系数不为0的概率
Prob > F P值 1%、5%、10%水平上显著
R-squared 拟合系数 表示模型的拟合程度
Adj R-squared 调整后的拟合系数 更精确的表示模型的拟合程度
Root MSE Root Mean square of error 均误差平方根 衡量模型中的误差项的大小

2.下半部分

指标 英文名 中文名 解释
Coefficient 系数 β
Std. err. The standard error of the coefficient 回归系数标准误 估计系数的波动水平
t t值 检验系数不为0的概率
p > [t] P值 1%、5%、10%水平上显著
[95% conf. interval] confidence interval 置信区间 回归系数取值范围,该范围有效率是95%

三、详细解释

在这里插入图片描述

SSM - 模型平方和

每一个预测值与平均值之间距离的平方之和
在这里插入图片描述
SSM越大越好

SSR - 残差平方和

每一个真实值与预测值之间距离的平方之和,即误差项的平方和
在这里插入图片描述
SSR越小越好

SST - 总平方和

每一个真实值与平均值之间距离的平方之和,用于衡量真实值的离散程度
在这里插入图片描述
SST = SSM + SSR ,即【总平方和=模型平方和+残差平方和】

R-squared - R方 - 拟合系数

拟合系数表示模型能解释的数据波动占总体波动的百分比,表示拟合程度
R方越高,表示模型的拟合程度越高,回归预测越准确
R方的值在0到1之间,具体的大小并无要求,需要根据不同的领域具体判断,在某些领域,10%-30%是合理的;而在某些领域甚至达到50%才是合理。
在这里插入图片描述

Adj R-squared - 调整后的拟合系数

R-squared无法控制变量的增加而导致过度拟合,Adj R-squared则在此基础上,引入了自变量的个数这一因素,以更加准确地评估模型的拟合效果。
在多元线性回归模型中,当自变量的数量增加时,R-squared也会随之增加。但是,当自变量的数量增加时,也容易出现过拟合(overfitting)现象,导致模型的预测能力下降。因此,为了避免过拟合,我们需要使用Adj R-squared对R-squared进行修正。Adj R-squared可以更精确地反映自变量对因变量的解释程度,避免了因自变量数量增加而导致的过拟合问题,是多元线性回归模型中一个比较重要的评估指标。

df - 自由度

自由度是表示能够自由变动的变量的个数

例如:有3个变量a、b、c,加入限制条件 a + b + c = 100,则a和b任意取一个值后,c无法自由取值,即df=2。
在本文章的数据中,观测值 n= 69,自由度 df = 69 - 1 = 68

本章数据中,假设观测值个数为n,自变量个数为k,则:
df_Total = n - 1
df_Model = k (不是k-1,因为模型中有常数项β0,所以模型的自由度就是自变量个数)
df_Residual = n - k -1 = 69 - 5 - 1 = 63

MS - 均方差

MS = SS / df

简单理解就是平方和的平均数

F - 总体显著性检验

F = MS_Model / MS_Residual

原假设H0:所有系数β均为0
备择假设H1:系数β不全为0

F值越大越好

Prob > F - P值

P值表示在在原假设成立的情况下,能够得到F值的概率,通常有模型在1%、5%、10%水平下拒绝原假设,从而认为自变量对因变量影响的显著水平,也可以说模型在1%、5%、10%水平上显著。
P值由F值查表得出

P值指的是假设检验中得到的显著性水平,其英文单词为"p-value"。其中,p表示概率(probability),value则代表一个数值,即显著性水平。
P值表示在在原假设成立的情况下,能够得到F值的概率,通常有模型在1%、5%、10%水平下拒绝原假设,从而认为自变量对因变量影响的显著水平,也可以说模型在1%、5%、10%水平上显著。
当 P < 0.1 时,模型在10%水平上显著。
当 P < 0.05 时,模型在5%水平上显著。
当 P < 0.01 时,模型在1%水平上显著。

P值越小越好

Root MSE

衡量模型中的误差项的大小,Root MSE越大,误差越大
在这里插入图片描述
Root MSE越小越好

Coef.

回归系数,其中_cons表示常数项

例:连续变量和0-1变量的解释不用,本文数据中:
车辆重量weight为连续变量,weight每增加一千克,价格price将增加6.006738美元。
是否为外国车辆foreign为0-1变量,当foreigh=1时,价格price将增加3303.213美元。

Std. Err.

衡量估计系数的波动水平

t

t = Coef. / Std. Err.

t检验中的字母t来源于英文单词"t-distribution",也就是t分布。T分布是一种概率分布函数,是一类常用于小样本假设检验的概率分布。T分布的形态与自由度有关,当自由度越大时,T分布越趋近于标准正态分布。在t检验中,t值的计算需要用到样本均值、标准差和样本量,然后再根据自由度和置信水平查找t分布表,得到检验的p值,以此来判断是否拒绝零假设。

越大越好

P > | t |

仍是P值,根据t值查表获得

当 | t | > 1.65 或 P < 0.1 时,模型在10%水平上显著,标记*。
当 | t | > 1.96 或 P < 0.05 时,模型在5%水平上显著,标记**。
当 | t | > 2.58 或 P < 0.01 时,模型在1%水平上显著,标记***。

越小越好

95% Conf. Interval

95%置信区间,表示回归系数的取值范围,该范围有效的概率是95%

Logo

AtomGit 是由开放原子开源基金会联合 CSDN 等生态伙伴共同推出的新一代开源与人工智能协作平台。平台坚持“开放、中立、公益”的理念,把代码托管、模型共享、数据集托管、智能体开发体验和算力服务整合在一起,为开发者提供从开发、训练到部署的一站式体验。

更多推荐