显著性差异 (ρ,Statistical significance) 是统计学上对数据差异性的评价。

当数据之间具有了显著性差异,就说明参与比对的数据应该不是来自于同一总体(population),而是来自于具有差异的两个不同总体,换句话说,实验的样本被统计出是有差别的。

显著性检验

“显著性检验”的英文名称是“significance test”。在统计学中,显著性检验是“统计假设检验”(Statistical hypothesis tesing)的一种,显著性检验是检测科学实验中的实验组与对照组之间是否存在差异以及差异是否显著的办法。“统计假设检验”指出了“显著性检验”的前提条件是“统计假设”,换言之“无假设,不检验”。任何人在使用显著性检验之前必须知道假设是什么。一般而言,把要检验的假设称之为原假设,记为H0,把与H0相对应的假设称之为备择假设,记为H1。
        如果原假设为真,而检验的结论却劝你放弃原假设,此时,我们把这种错误称之为第一类错误。通常把第一类错误出现的概率记为
        如果原假设不为真,而检验的结论却劝你接受原假设。此时,我们把这种错误称之为第二类错误,通常第二类错误出现的概率记为
        通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。我们把这样的假设检验称为显著性检验,概率α称为显著性水平(α,Significance level)。显著性水平是数学界约定俗成的,一般有α =0.05,0.025.0.01这三种情况。代表着显著性检验的结论错误率必须低于5%或2.5%或1%(统计学中,通常把在现实世界中发生几率小于5%的事件称之为“不可能事件”)。

 

通常α值选取为0.05(即5%)作为显著性的门槛,但不同实验敏感度要求不同。在某些领域的研究当中,可以提高显著性的门槛,诸如药物测试或精密仪器制造等等,对于这些领域,可能选取0.01更为合适。

由于置信度= 1-α(%),因此如果α值为0.05,那么达到此门槛的测试统计结果置信度就为95%。

 

P值指的是比较的两者的差别是由机遇所致的可能性大小。P值越小,越有理由认为对比事物间存在差异。例如,P<0.05,就是说结果显示的差别是由机遇所致的可能性不足5%,或者说,别人在同样的条件下重复同样的研究,得出相反结论的可能性不足5%。P>0.05称“不显著”;P<=0.05称“显著”,P<=0.01称“非常显著”

由于常用“显著”来表示P值大小,所以P值最常见的误用是把统计学上的显著与临床或实际中的显著差异相混淆,即混淆“差异具有显著性”和“具有显著差异”二者的意思。其实,前者指的是p<=0.05,即说明有充分的理由认为比较的二者来自同一总体的可能性不足5%,因而认为二者确实有差异,下这个结论出错的可能性<=5%。而后者的意思是二者的差别确实很大。举例来说,4和40的差别很大,因而可以说是“有显著差异”,而4和4.2差别不大,但如果计算得到的P值<=0.05,则认为二者“差别有显著性”,但是不能说“有显著差异”。
  • P(X=x)<ρ=0.05为“显著(significant)”,统计分析软件SPSS中以*标记;
  • P(X=x)<ρ=0.01为“极显著(extreme significant)”,通常以**标记。

计算并确定统计显著性有点复杂,往往实用中会用一些软件工具来计算,例如IBM的SPSS或者开源的Jamovi,这两者都是统计学分析工具。此外,网上还有一些在线计算器,主要有Z测试计算器和T测试计算器之类,专用于做显著性相关统计学评分的计算。

我们一般使用ORIGIN或者Graphpad便可以画出来。下面,小编给大家介绍一个新软件,专门用来进行统计学分析及画图的软件-MINITAB

链接:https://www.jianshu.com/p/11f91c292bd1;科研论文中常见的P值和显著性是什么意思?一文搞懂P值及其计算 (360doc.com

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐