本文适合于工科课程不过于要求过程严谨、侧重应用的特点,且拉普拉斯变换与拉普拉斯逆变换适用于工科课程中的信号与系统复变函数与积分变换电路理论自动控制原理以及计算机控制原理的基础部分,因此本文提供拉氏变换与拉氏逆变换的重要结论与定理,同时,也为对相关证明感兴趣的同学提供了结论与定理的证明,如果你觉得本文对你有所帮助,可收藏本文,但转载不被允许

一、定义与概念

1.1 拉普拉斯变换

设函数 f ( t ) f(t) f(t)是定义在 [ 0 , + ∞ ) [0,+\infty) [0,+)上的实值函数,如果对于复参数 s = β + j w s=\beta+\text{j}w s=β+jw,积分
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t (1) F(s)=\int_0^{+\infty}f(t)e^{-st}\,dt\tag{1} F(s)=0+f(t)estdt(1)
在复平面 s s s的某一个区域内收敛,则称 F ( s ) F(s) F(s) f ( t ) f(t) f(t)的拉普拉斯变换(简称拉氏变换),记为 F ( s ) = L [ f ( t ) ] F(s)=\mathscr{L}[f(t)] F(s)=L[f(t)],该函数被称为像函数

1.2 拉普拉斯逆变换

已知函数 f ( t ) f(t) f(t)经过拉普拉斯变换后得到 F ( s ) F(s) F(s),则原函数 f ( x ) f(x) f(x)可由 F ( s ) F(s) F(s)经过拉普拉斯逆变换得到:
f ( t ) = L − 1 [ F ( s ) ] = 1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t   d s (2) f(t)=\mathscr{L}^{-1}[F(s)]=\frac{1}{2\pi j}\int_{\beta-j\infty}^{\beta+j\infty}F(s)e^{st}\,ds\tag{2} f(t)=L1[F(s)]=2πj1βjβ+jF(s)estds(2)
f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathscr{L}^{-1}[F(s)] f(t)=L1[F(s)] f ( t ) f(t) f(t)被称为原像函数,此过程称为拉普拉斯逆变换(简称拉氏逆变换)。

二、拉氏变换和拉氏逆变换常用结论和经典定理

2.1 常用结论

No.Name of items       f ( t ) f(t) f(t)                  F ( s ) \textit{F}(s) F(s)           
1unit impluse δ ( t ) \delta(t) δ(t)1
2unit step u ( t ) u(t) u(t) 1 s \frac{1}{s} s1
3ramp tu ( t ) \textit{tu}(t) tu(t) 1 s 2 \frac{1}{s^{2}} s21
4exponential e at u ( t ) e^{\textit{at}}\textit{u}(t) eatu(t) 1 s − a \frac{1}{s-a} sa1
5sine sin ⁡ w t \sin{wt} sinwt w s 2 + w 2 \frac{w}{s^{2}+w^{2}} s2+w2w
6cosine cos ⁡ w t \cos{wt} coswt s s 2 + w 2 \frac{s}{s^{2}+w^{2}} s2+w2s
7power t m t^m tm m ! s m + 1 \frac{m!}{s^{m+1}} sm+1m!

2.2 经典定理

No.定理&性质名称                  表达式                   
1线性性质 L [ α f ( t ) + β g ( t ) ] = α F ( s ) + β G ( s ) \mathscr{L}[\alpha f(t)+\beta g(t)]=\alpha F(s)+\beta G(s) L[αf(t)+βg(t)]=αF(s)+βG(s),其中 α \alpha α β \beta β为常数
2相似性质 L [ f ( a t ) ] = 1 a F ( s a ) \mathscr{L}[f(at)]=\frac{1}{a}F(\frac{s}{a}) L[f(at)]=a1F(as),其中 a a a为大于0的常数
3微分之导数的像函数 L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) \mathscr{L}[{f}^{(n)}(t)]=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots-{f}^{(n-1)}(0) L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0)
4微分之像函数的导数 F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] {F}^{(n)}(s)=(-1)^n\mathscr{L}[t^nf(t)] F(n)(s)=(1)nL[tnf(t)]
5积分的像函数 L [ ∫ 0 t d t ∫ 0 t d t ⋯ ∫ 0 t ⏟ n 个 f ( t ) d t ] = 1 s n F ( s ) \mathscr{L}[\underbrace{\int_0^tdt\int_0^tdt\cdots\int_0^t}_{n个}f(t)dt]=\frac{1}{s^n}F(s) L[n 0tdt0tdt0tf(t)dt]=sn1F(s)
6像函数的积分 ∫ s ∞ d s ∫ s ∞ d s ⋯ ∫ s ∞ ⏟ n 个 F ( s ) d s = L [ f ( t ) t n ] \underbrace{\int_s^\infty ds\int_s^\infty ds\cdots\int_s^\infty}_{n个} F(s)ds=\mathscr{L}[\frac{f(t)}{t^n}] n sdssdssF(s)ds=L[tnf(t)]
7延迟性质 L [ f ( t − τ ) ] = e − s τ F ( s ) \mathscr{L}[f(t-\tau)]=e^{-s\tau}F(s) L[f(tτ)]=esτF(s)
8位移性质 L [ e a t f ( t ) ] = F ( s − a ) \mathscr{L}[e^{at}f(t)]=F(s-a) L[eatf(t)]=F(sa)
9终值定理 lim ⁡ t → + ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim\limits_{t \to +\infty}f(t)=\lim\limits_{s\to 0}sF(s) t+limf(t)=s0limsF(s)
10初值定理 lim ⁡ t → 0 + f ( t ) = lim ⁡ s → + ∞ s F ( s ) \lim\limits_{t \to 0^+}f(t)=\lim\limits_{s\to +\infty}sF(s) t0+limf(t)=s+limsF(s)

三、常用结论证明

3.1 Unit impluse function

已知函数 f ( t ) = δ ( t ) f(t)=\delta (t) f(t)=δ(t),因此该函数经过拉普拉斯变换将得到像函数:

已知 δ ( t ) \delta(t) δ(t)的定义如下:
δ ( t ) = { A − τ 2 ⩽ t ⩽ τ 2 0 t > ∣ τ 2 ∣    , 且 A τ = 1 , τ → 0 + \delta(t)=\left\{ \begin{aligned} A && -\frac{\tau}{2}\leqslant t\leqslant\frac{\tau}{2} \\ 0 && t> \left|\frac{\tau}{2} \right | \\ \end{aligned}\,\,,且A\tau=1,\tau\to0^+ \right. δ(t)= A02τt2τt> 2τ ,Aτ=1,τ0+

F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t = ∫ 0 + ∞ δ ( t ) e − s t d t = ∫ − ∞ + ∞ δ ( t ) e − j w t d t = A ∫ − τ 2 τ 2 e − j w t d t = A − j w ( e − j w τ 2 − e j w τ 2 ) = 2 A w sin ⁡ w τ 2 = lim ⁡ τ → 0 + 2 sin ⁡ w τ 2 w τ = 1 \begin{aligned} F(s)&=\int_0^{+\infty}f(t)e^{-st}\,dt\\&=\int_0^{+\infty}\delta(t)e^{-st}dt\\ &=\int_{-\infty}^{+\infty}\delta(t)e^{-jwt}dt\\&=A\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}e^{-jwt}dt\\ &=\frac{A}{-jw}\left(e^{-jw\frac{\tau}{2}}-e^{jw\frac{\tau}{2}}\right)\\&=\frac{2A}{w}\sin\frac{w\tau}{2}\\ &=\lim\limits_{\tau\to0^+}\frac{2\sin\frac{w \tau}{2}}{w\tau}\\&=1 \end{aligned} F(s)=0+f(t)estdt=0+δ(t)estdt=+δ(t)ejwtdt=A2τ2τejwtdt=jwA(ejw2τejw2τ)=w2Asin2wτ=τ0+limwτ2sin2wτ=1
证毕


3.2 Unit step function

已知函数 f ( t ) = u ( t ) f(t)=u(t) f(t)=u(t),因此该函数经过拉普拉斯变换将得到像函数:
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t = ∫ 0 + ∞ u ( t ) e − s t d t = − 1 s e − s t ∣ 0 + ∞ = 1 s F(s)=\int_0^{+\infty}f(t)e^{-st}\,dt=\int_0^{+\infty}u(t)e^{-st}dt=-\frac{1}{s}e^{-st}\big|_0^{+\infty}=\frac{1}{s} F(s)=0+f(t)estdt=0+u(t)estdt=s1est 0+=s1
证毕


3.3 Ramp function

已知函数 f ( t ) = t u ( t ) f(t)=tu(t) f(t)=tu(t),因此该函数经过拉普拉斯变换将得到像函数:
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t = ∫ 0 + ∞ t u ( t ) e − s t d t = − 1 s ∫ 0 + ∞ t d ( e − s t ) = − 1 s [ t e − s t ∣ 0 + ∞ − ∫ 0 + ∞ e − s t d t ] = 1 s 2 \begin{aligned} F(s)&=\int_0^{+\infty}f(t)e^{-st}\,dt\\ &=\int_0^{+\infty}tu(t)e^{-st}dt\\ &=-\frac{1}{s}\int_0^{+\infty}td(e^{-st})\\ &=-\frac{1}{s}\left[te^{-st}\big|_0^{+\infty}-\int_0^{+\infty}e^{-st}dt\right]\\&=\frac{1}{s^2} \end{aligned} F(s)=0+f(t)estdt=0+tu(t)estdt=s10+td(est)=s1[test 0+0+estdt]=s21
证毕


3.4 Exponential function

已知函数 f ( t ) = e a t u ( t ) f(t)=e^{at}u(t) f(t)=eatu(t),因此该函数经过拉普拉斯变换将得到像函数:
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t   d t = ∫ 0 + ∞ e a t u ( t ) e − s t d t = 1 a − s e ( a − s ) t ∣ 0 + ∞ = 1 s − a F(s)=\int_0^{+\infty}f(t)e^{-st}\,dt=\int_0^{+\infty}e^{at}u(t)e^{-st}dt=\frac{1}{a-s}e^{(a-s)t}\big|_0^{+\infty}=\frac{1}{s-a} F(s)=0+f(t)estdt=0+eatu(t)estdt=as1e(as)t 0+=sa1
证毕


3.5 Sine function

已知函数 f ( t ) = sin ⁡ w t f(t)=\sin wt f(t)=sinwt,因此该函数经过拉普拉斯变换将得到像函数:
F ( s ) = L [ sin ⁡ w t ] = 1 2 j ( L [ e j w t ] − L [ e − j w t ] ) = 1 2 j ( 1 s − j w − 1 s + j w ) = w s 2 + w 2 \begin{aligned} F(s)&=\mathscr{L}[\sin wt]=\frac{1}{2j}\left(\mathscr{L}[e^{jwt}]-\mathscr{L}[e^{-jwt}]\right)\\&=\frac{1}{2j}\left(\frac{1}{s-jw}-\frac{1}{s+jw}\right)=\frac{w}{s^2+w^2} \end{aligned} F(s)=L[sinwt]=2j1(L[ejwt]L[ejwt])=2j1(sjw1s+jw1)=s2+w2w
证毕


3.6 Cosine function

已知函数 f ( t ) = cos ⁡ w t f(t)=\cos wt f(t)=coswt,因此该函数经过拉普拉斯变换将得到像函数:
F ( s ) = L [ cos ⁡ w t ] = 1 2 ( L [ e j w t ] + L [ e − j w t ] ) = 1 2 ( 1 s − j w + 1 s + j w ) = s s 2 + w 2 \begin{aligned} F(s)&=\mathscr{L}[\cos wt]=\frac{1}{2}\left(\mathscr{L}[e^{jwt}]+\mathscr{L}[e^{-jwt}]\right)\\&=\frac{1}{2}\left(\frac{1}{s-jw}+\frac{1}{s+jw}\right)=\frac{s}{s^2+w^2} \end{aligned} F(s)=L[coswt]=21(L[ejwt]+L[ejwt])=21(sjw1+s+jw1)=s2+w2s
证毕


3.7 Power function

已知函数 f ( t ) = t m f(t)=t^m f(t)=tm,因此该函数经过拉普拉斯变换将得到像函数:
F ( s ) = L [ t m ] = ∫ 0 + ∞ t m e − s t d t = − 1 s ∫ 0 + ∞ t m d ( e − s t ) = − 1 s t m e − s t ∣ 0 + ∞ + m s ∫ 0 + ∞ t m − 1 e − s t d t = m s L [ t m − 1 ] = m ( m − 1 ) s 2 L [ t m − 2 ]             ⋮ = m ! s m L [ t 0 ] = m ! s m + 1 \begin{aligned} F(s)&=\mathscr{L}[t^m]\\&=\int_0^{+\infty}t^me^{-st}dt\\&=-\frac{1}{s}\int_0^{+\infty}t^md(e^{-st})\\ &=-\frac{1}{s}t^me^{-st}\big|_0^{+\infty}+\frac{m}{s}\int_0^{+\infty}t^{m-1}e^{-st}dt\\ &=\frac{m}{s}\mathscr{L}[t^{m-1}]\\&=\frac{m(m-1)}{s^2}\mathscr{L}[t^{m-2}]\\ &\,\,\,\,\,\,\,\,\,\,\,\vdots\\ &=\frac{m!}{s^m}\mathscr{L}[t^0]\\&=\frac{m!}{s^{m+1}} \end{aligned} F(s)=L[tm]=0+tmestdt=s10+tmd(est)=s1tmest 0++sm0+tm1estdt=smL[tm1]=s2m(m1)L[tm2]=smm!L[t0]=sm+1m!
证毕


四、经典定理证明

4.1 线性性质

α , β \alpha,\beta α,β为常数,且有 L [ f ( t ) ] = F ( s ) , L [ g ( t ) ] = G ( s ) \mathscr{L}[f(t)]=F(s),\mathscr{L}[g(t)]=G(s) L[f(t)]=F(s),L[g(t)]=G(s),则有
L [ α f ( t ) + β g ( t ) ] = ∫ 0 + ∞ ( α f ( t ) + β g ( t ) ) e − s t d t = α ∫ 0 + ∞ f ( t ) e − s t d t + β ∫ 0 + ∞ g ( t ) e − s t d t = α F ( s ) + β G ( s ) \begin{aligned} \mathscr{L}[\alpha f(t)+\beta g(t)]&=\int_0^{+\infty}\left(\alpha f(t)+\beta g(t)\right)e^{-st}dt\\ &=\alpha \int_0^{+\infty}f(t)e^{-st}dt+\beta \int_0^{+\infty}g(t)e^{-st}dt\\ &=\alpha F(s)+\beta G(s) \end{aligned} L[αf(t)+βg(t)]=0+(αf(t)+βg(t))estdt=α0+f(t)estdt+β0+g(t)estdt=αF(s)+βG(s)
证毕


4.2 相似性质

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则对任一常数 a > 0 a>0 a>0
L [ f ( a t ) ] = ∫ 0 + ∞ f ( a t ) e − s t d t = 令 x = a t 1 a ∫ 0 + ∞ f ( x ) e − ( s a ) x d x = 1 a F ( s a ) \begin{aligned} \mathscr{L}[f(at)]&=\int_0^{+\infty}f(at)e^{-st}dt\\& \xlongequal{令x=at}\frac{1}{a}\int_0^{+\infty}f(x)e^{-(\frac{s}{a})x}dx\\&=\frac{1}{a}F\left({\frac{s}{a}}\right) \end{aligned} L[f(at)]=0+f(at)estdtx=at a10+f(x)e(as)xdx=a1F(as)
证毕


4.3 微分之导数的像函数

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则有
L [ f ′ ( t ) ] = ∫ 0 + ∞ f ′ ( t ) e − s t d t = 分部积分 f ( t ) e − s t ∣ 0 + ∞ + s ∫ 0 + ∞ f ( t ) e − s t d t = s F ( s ) − f ( 0 ) \begin{aligned} \mathscr{L}[f'(t)]&=\int_0^{+\infty}f'(t)e^{-st}dt\\ &\xlongequal{分部积分}f(t)e^{-st}\big|_0^{+\infty}+s\int_0^{+\infty}f(t)e^{-st}dt\\ &=sF(s)-f(0) \end{aligned} L[f(t)]=0+f(t)estdt分部积分 f(t)est 0++s0+f(t)estdt=sF(s)f(0)
经过数学归纳法可得:
L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) \mathscr{L}[{f}^{(n)}(t)]=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots-{f}^{(n-1)}(0) L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0)
证毕


4.4 微分之像函数的导数

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则有
F ′ ( s ) = d d s ∫ 0 + ∞ f ( t ) e − s t d t = ∫ 0 + ∞ ∂ ∂ s [ f ( t ) e − s t ] d t = − ∫ 0 + ∞ t f ( t ) e − s t d t = − L [ t f ( t ) ] \begin{aligned} F'(s)&=\frac{d}{ds}\int_0^{+\infty}f(t)e^{-st}dt\\&=\int_0^{+\infty}\frac{\partial}{\partial s}\left[f(t)e^{-st}\right]dt\\ &=-\int_0^{+\infty}tf(t)e^{-st}dt\\ &=-\mathscr{L}[tf(t)] \end{aligned} F(s)=dsd0+f(t)estdt=0+s[f(t)est]dt=0+tf(t)estdt=L[tf(t)]
F ( s ) F(s) F(s)施行同样步骤,反复进行可得:
F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] {F}^{(n)}(s)=(-1)^n\mathscr{L}[t^nf(t)] F(n)(s)=(1)nL[tnf(t)]
证毕


4.5 积分的像函数

L [ f ( t ) ] = F ( s ) , g ( t ) = ∫ 0 t f ( t ) d t \mathscr{L}\left[f(t)\right]=F(s),g(t)=\int_0^tf(t)dt L[f(t)]=F(s),g(t)=0tf(t)dt,则 g ′ ( t ) = f ( t ) g'(t)=f(t) g(t)=f(t),且 g ( 0 ) = 0 g(0)=0 g(0)=0,利用微分之导数的像函数可得:
L [ g ′ ( t ) ] = s L [ g ( t ) ] − g ( 0 ) = s L [ g ( t ) ] = s L [ ∫ 0 t f ( t ) d t ] \mathscr{L}[g'(t)]=s\mathscr{L}[g(t)]-g(0)=s\mathscr{L}[g(t)]=s\mathscr{L}\left[\int_0^tf(t)dt\right] L[g(t)]=sL[g(t)]g(0)=sL[g(t)]=sL[0tf(t)dt]
即有 L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s ) \mathscr{L}\left[\int_0^tf(t)dt\right]=\frac{1}{s}F(s) L[0tf(t)dt]=s1F(s),反复利用上式可得:
L [ ∫ 0 t d t ∫ 0 t d t ⋯ ∫ 0 t ⏟ n 个 f ( t ) d t ] = 1 s n F ( s ) \mathscr{L}[\underbrace{\int_0^tdt\int_0^tdt\cdots\int_0^t}_{n个}f(t)dt]=\frac{1}{s^n}F(s) L[n 0tdt0tdt0tf(t)dt]=sn1F(s)
证毕


4.6 像函数的积分

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则有
∫ s + ∞ F ( s ) d s = ∫ s + ∞ [ ∫ 0 + ∞ f ( t ) e − s t d t ] d s = ∫ 0 + ∞ f ( t ) [ ∫ s + ∞ e − s t d s ] d t = ∫ 0 + ∞ f ( t ) ⋅ [ − 1 t e − s t ] ∣ s + ∞ d t = ∫ 0 + ∞ f ( t ) t e − s t = L [ f ( t ) t ] \begin{aligned} \int_s^{+\infty}F(s)ds&=\int_s^{+\infty}\left[\int_0^{+\infty}f(t)e^{-st}dt\right]ds\\ &=\int_0^{+\infty}f(t)\left[\int_s^{+\infty}e^{-st}ds\right]dt\\ &=\int_0^{+\infty}f(t)\cdot\left[-\frac{1}{t}e^{-st}\right]\big|_s^{+\infty}dt\\ &=\int_0^{+\infty}\frac{f(t)}{t}e^{-st}\\ &=\mathscr{L}\left[\frac{f(t)}{t}\right] \end{aligned} s+F(s)ds=s+[0+f(t)estdt]ds=0+f(t)[s+estds]dt=0+f(t)[t1est] s+dt=0+tf(t)est=L[tf(t)]
反复利用上式可得:
∫ s ∞ d s ∫ s ∞ d s ⋯ ∫ s ∞ ⏟ n 个 F ( s ) d s = L [ f ( t ) t n ] \underbrace{\int_s^\infty ds\int_s^\infty ds\cdots\int_s^\infty}_{n个} F(s)ds=\mathscr{L}[\frac{f(t)}{t^n}] n sdssdssF(s)ds=L[tnf(t)]
证毕


4.7 延迟性质

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),当 t < 0 t<0 t<0时, f ( t ) = 0 f(t)=0 f(t)=0,则对任一非负实数 τ \tau τ
L [ f ( t − τ ) ] = ∫ 0 + ∞ f ( t − τ ) e − s t d t = ∫ τ + ∞ f ( t − τ ) e − s t d t \mathscr{L}[f(t-\tau)]=\int_0^{+\infty}f(t-\tau)e^{-st}dt=\int_\tau^{+\infty}f(t-\tau)e^{-st}dt L[f(tτ)]=0+f(tτ)estdt=τ+f(tτ)estdt
t 1 = t − τ t_1=t-\tau t1=tτ
L = ∫ 0 + ∞ f ( t 1 ) e − s ( t 1 + τ ) d t 1 = e − s τ ∫ 0 + ∞ f ( t 1 ) e − s t 1 d t 1 = e − s τ F ( s ) \mathscr{L}=\int_0^{+\infty}f(t_1)e^{-s(t_1+\tau)}dt_1=e^{-s\tau}\int_0^{+\infty}f(t_1)e^{-st_1}dt_1=e^{-s\tau}F(s) L=0+f(t1)es(t1+τ)dt1=esτ0+f(t1)est1dt1=esτF(s)
证毕


4.8 位移性质

L [ f ( t ) ] = F ( s ) \mathscr{L}\left[f(t)\right]=F(s) L[f(t)]=F(s),则有
L [ e a t f ( t ) ] = ∫ 0 + ∞ e a t f ( t ) e − s t d t = ∫ 0 + ∞ f ( t ) e − ( s − a ) t d t = F ( s − a ) \mathscr{L}[e^{at}f(t)]=\int_0^{+\infty}e^{at}f(t)e^{-st}dt=\int_0^{+\infty}f(t)e^{-(s-a)t}dt=F(s-a) L[eatf(t)]=0+eatf(t)estdt=0+f(t)e(sa)tdt=F(sa)
证毕


4.9 终值定理

从拉普拉斯变换的微分性质我们知道以下一个简单的等式:
L [ f ′ ( t ) ] = ∫ 0 + ∞ f ′ ( t ) e − s t d t = s F ( s ) − f ( 0 ) \mathscr{L}[f'(t)]=\int_0^{+\infty}f'(t)e^{-st}dt=sF(s)-f(0) L[f(t)]=0+f(t)estdt=sF(s)f(0)
我们将等式两边取极限 s → 0 s\to0 s0,可得
lim ⁡ s → 0 ∫ 0 + ∞ f ′ ( t ) e − s t d t = ∫ 0 + ∞ f ′ ( t ) d t = lim ⁡ t → + ∞ f ( t ) − f ( 0 ) = lim ⁡ s → 0 s F ( s ) − f ( 0 ) \lim\limits_{s\to0}\int_0^{+\infty}f'(t)e^{-st}dt=\int_0^{+\infty}f'(t)dt=\lim\limits_{t\to+\infty}f(t)-f(0)=\lim\limits_{s\to0}sF(s)-f(0) s0lim0+f(t)estdt=0+f(t)dt=t+limf(t)f(0)=s0limsF(s)f(0)
化简可得:
f ( + ∞ ) = lim ⁡ t → + ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) f(+\infty)=\lim\limits_{t\to+\infty}f(t)=\lim\limits_{s\to0}sF(s) f(+)=t+limf(t)=s0limsF(s)
证毕


4.10 初值定理

从拉普拉斯变换的微分性质我们知道以下一个简单的等式:
L [ f ′ ( t ) ] = ∫ 0 + ∞ f ′ ( t ) e − s t d t = s F ( s ) − f ( 0 ) \mathscr{L}[f'(t)]=\int_0^{+\infty}f'(t)e^{-st}dt=sF(s)-f(0) L[f(t)]=0+f(t)estdt=sF(s)f(0)
我们将等式两边取极限 s → + ∞ s\to+\infty s+,可得
lim ⁡ s → + ∞ ∫ 0 + ∞ f ′ ( t ) e − s t d t = 0 = lim ⁡ s → + ∞ s F ( s ) − f ( 0 ) \lim\limits_{s\to+\infty}\int_0^{+\infty}f'(t)e^{-st}dt=0=\lim\limits_{s\to+\infty}sF(s)-f(0) s+lim0+f(t)estdt=0=s+limsF(s)f(0)
因此,我们可以得到:
lim ⁡ t → 0 + f ( t ) = f ( 0 ) = lim ⁡ s → + ∞ s F ( s ) \lim\limits_{t\to0^+}f(t)=f(0)=\lim\limits_{s\to+\infty}sF(s) t0+limf(t)=f(0)=s+limsF(s)
证毕


参考文献

[1]李红, 谢松法. 复变函数与积分变换.第4版[M]. 高等教育出版社, 2013.

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐