CVPR2021|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码/解析)【持续更新】
·
CVPR2021|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)
- 1.超分辨率(Super-Resolution)
- Unsupervised Degradation Representation Learning for Blind Super-Resolution
- Data-Free Knowledge Distillation For Image Super-Resolution
- AdderSR: Towards Energy Efficient Image Super-Resolution
- Exploring Sparsity in Image Super-Resolution for Efficient Inference
- ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
- Cross-MPI: Cross-scale Stereo for Image Super-Resolution using Multiplane Images
- LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-resolution
- Learning Continuous Image Representation with Local Implicit Image Function
- Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
- Robust Reference-based Super-Resolution via C²-Matching
- GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution
- BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
- Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling
- 2.图像去雨(Image Deraining)
- 3.图像去雾(Image Dehazing)
- 4.去模糊(Deblurring)
- 5.去噪(Denoising)
- 6.图像恢复(Image Restoration)
- Multi-Stage Progressive Image Restoration
- CT Film Recovery via Disentangling Geometric Deformation and Illumination Variation: Simulated Datasets and Deep Models
- Restoring Extremely Dark Images in Real Time
- Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration
- Progressive Semantic-Aware Style Transformation for Blind Face Restoration
- 7.图像增强(Image Enhancement)
- 8.图像去摩尔纹(Image Demoireing)
- 9.图像修复(Inpainting)
- 10.图像质量评价(Image Quality Assessment)
- 11.插帧(Frame Interpolation)
- 12.视频压缩(Video Compression)
- 13.其他多任务
- 参考
- 相关Low-Level-Vision整理
Awesome-CVPR2021-Low-Level-Vision((持续更新,3月22日新增1篇恢复1其他;3月21日新增1篇超分1去雨;3月16日新增1篇去噪;3月13日新增1篇:1inpaiting;3月11日新增7篇:1质量评估2去雾4超分1增强;3月9日新增2篇去雨;3月8日新增2篇:2图像恢复;3月7日新增3篇:1去雨1去模糊1超分;3月6日新增2篇:1超分1inpainting)
整理了下2021年CVPR图像重建/底层视觉(Low-Level Vision)相关的一些论文,包括超分辨率,图像恢复,去雨,去雾,去模糊,去噪等方向。大家如果觉得有帮助,欢迎点赞和收藏~~
优先在Github更新:Awesome-CVPR2021-Low-Level-Vision,欢迎star~
知乎:https://zhuanlan.zhihu.com/p/354662001
CVPR2021官网:http://cvpr2021.thecvf.com
开会时间:2021年6月19日-6月25日
论文接收公布时间:2021年2月28日
1.超分辨率(Super-Resolution)
Unsupervised Degradation Representation Learning for Blind Super-Resolution
- Paper:
- Code:https://github.com/LongguangWang/DASR
- Analysis:
Data-Free Knowledge Distillation For Image Super-Resolution
AdderSR: Towards Energy Efficient Image Super-Resolution
- Paper:https://arxiv.org/abs/2009.08891
- Code:
Exploring Sparsity in Image Super-Resolution for Efficient Inference
ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
Cross-MPI: Cross-scale Stereo for Image Super-Resolution using Multiplane Images
- Paper:https://arxiv.org/abs/2011.14631
- Code:
- Homepage:http://www.liuyebin.com/crossMPI/crossMPI.html
- Analysis:CVPR 2021,Cross-MPI以底层场景结构为线索的端到端网络,在大分辨率(x8)差距下也可完成高保真的超分辨率
LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-resolution
Learning Continuous Image Representation with Local Implicit Image Function
- Paper:https://arxiv.org/abs/2012.09161
- Code:https://github.com/yinboc/liif
- Homepage:https://yinboc.github.io/liif/
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
Robust Reference-based Super-Resolution via C²-Matching
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution
- Paper:https://ckkelvinchan.github.io/papers/glean.pdf
- Code:
- Homepage:https://ckkelvinchan.github.io/projects/GLEAN/
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
- Paper:https://arxiv.org/abs/2012.02181
- Code:https://github.com/ckkelvinchan/BasicVSR-IconVSR
- Homepage:https://ckkelvinchan.github.io/projects/BasicVSR/
Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling
- Paper:
- Code:https://github.com/ding3820/MIMO-VRN
- Homepage:https://ding3820.github.io/MIMO-VRN/
2.图像去雨(Image Deraining)
Removing Raindrops and Rain Streaks in One Go
From Rain Generation to Rain Removal
Semi-Supervised Video Deraining Embedded with Dynamical Rain Generator
Closing the Loop: Joint Rain Generation and Removal via Disentangled Image Translation
3.图像去雾(Image Dehazing)
Learning to Restore Hazy Video: A New Real-World Dataset and A New Method
ContrastiveLearning for Compact Single Image Dehazing
4.去模糊(Deblurring)
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring
5.去噪(Denoising)
Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
6.图像恢复(Image Restoration)
Multi-Stage Progressive Image Restoration
- Paper:https://arxiv.org/abs/2102.02808
- Code:https://github.com/swz30/MPRNet
- Analysis:
CT Film Recovery via Disentangling Geometric Deformation and Illumination Variation: Simulated Datasets and Deep Models
Restoring Extremely Dark Images in Real Time
Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration
- Paper:https://arxiv.org/abs/2012.00301
- Code:https://github.com/panpanfei/Dual-Pixel-Exploration-Simultaneous-Depth-Estimation-and-Image-Restoration
Progressive Semantic-Aware Style Transformation for Blind Face Restoration
7.图像增强(Image Enhancement)
Auto-Exposure Fusion for Single-Image Shadow Removal
- Paper:https://arxiv.org/abs/2103.01255
- Code:https://github.com/tsingqguo/exposure-fusion-shadow-removal
Learning Multi-Scale Photo Exposure Correction
Robust Reflection Removal with Reflection-free Flash-only Cues
8.图像去摩尔纹(Image Demoireing)
9.图像修复(Inpainting)
PD-GAN:Probabilistic Diverse GAN for Image Inpainting
Generating Diverse Structure for Image Inpainting with Hierarchical VQ-VAE
- Paper:https://arxiv.org/abs/2103.10022
- Code:https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting
10.图像质量评价(Image Quality Assessment)
SDD-FIQA:Unsupervised Face Image Quality Assessment with Similarity DistributionDistance
11.插帧(Frame Interpolation)
FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation
- Paper:https://arxiv.org/abs/2012.08512
- Code:https://tarun005.github.io/FLAVR/Code
- Homepage:https://tarun005.github.io/FLAVR/
CDFI: Compression-driven Network Design for Frame Interpolation
- Paper:https://arxiv.org/abs/2103.10559
- Code:https://github.com/tding1/Compression-Driven-Frame-Interpolation
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
12.视频压缩(Video Compression)
MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing
13.其他多任务
Pre-Trained Image Processing Transformer
- Paper:https://arxiv.org/abs/2012.00364
- Code:
- Analysis:CVPR 2021 | Transformer进军low-level视觉!北大华为等提出预训练模型IPT
Invertible Image Signal Processing
持续更新~
参考
[1] CVPR 2021 结果出炉!最新71篇CVPR’21论文汇总(更新中)
[2] CVPR2021最新信息及已接收论文/代码(持续更新)
[3] 15分钟看完:悉尼科技大学入选 CVPR 2021 的 13 篇论文,都研究什么?
[4] CVPR 2021放榜,腾讯优图20篇论文都在这里了
相关Low-Level-Vision整理
更多推荐
已为社区贡献2条内容
所有评论(0)