【Pytorch】如何获取模型的参数量和计算量
·
How to install
-
Through PyPi
pip install thop
-
Using GitHub (always latest)
pip install --upgrade git+https://github.com/Lyken17/pytorch-OpCounter.git
How to use
-
Basic usage
from torchvision.models import resnet50 from thop import profile model = resnet50() flops, params = profile(model, input_size=(1, 3, 224,224))
-
Define the rule for 3rd party module.
class YourModule(nn.Module): # your definition def count_your_model(model, x, y): # your rule here flops, params = profile(model, input_size=(1, 3, 224,224), custom_ops={YourModule: count_your_model})
Results on Recent Models
Model | Params(M) | FLOPs(G) |
---|---|---|
alexnet | 61.10 | 0.71 |
vgg11 | 132.86 | 7.75 |
vgg11_bn | 132.87 | 7.76 |
vgg13 | 133.05 | 11.46 |
vgg13_bn | 133.05 | 11.48 |
vgg16 | 138.36 | 15.62 |
vgg16_bn | 138.37 | 15.65 |
vgg19 | 143.67 | 19.79 |
vgg19_bn | 143.68 | 19.82 |
densenet121 | 7.98 | 2.79 |
densenet161 | 28.68 | 7.69 |
densenet169 | 14.15 | 3.33 |
densenet201 | 20.01 | 4.28 |
resnet18 | 11.69 | 1.58 |
resnet34 | 21.80 | 3.44 |
resnet50 | 25.56 | 3.53 |
resnet101 | 44.55 | 7.26 |
resnet152 | 60.19 | 10.99 |
squeezenet1_0 | 1.25 | 0.70 |
squeezenet1_1 | 1.24 | 0.34 |
更多推荐
已为社区贡献5条内容
所有评论(0)