Mit6.S081-实验1-Xv6 and Unix utilities
Mit6.S081-实验1-Xv6 and Unix utilities
前言
一、Boot xv6
1,实验目的
利用qemu启动xv6
2,操作流程
1)切换到xv6-labs-2020代码库的lab1分支
git checkout util
参考:https://pdos.csail.mit.edu/6.828/2020/labs/util.html
2)启动xv6
make qemu
参考:https://pdos.csail.mit.edu/6.828/2020/labs/util.html
3)测试xv6
ls
参考:https://pdos.csail.mit.edu/6.828/2020/labs/util.html
4)过程分析
xv6通过qemu启动完成后,启动了shell进程。通过shell,启动子进程ls,显示了xv6目录下的文件。
5)其他操作
查看xv6中的进程:Ctrl+p(xv6没有实现ps程序)
退出qemu启动的xv6:Ctrl+a x
二、在xv6中添加一个自己编写的程序
1,源码准备
在user目录下创建copy.c
// copy.c: 将控制台输入内容输出到控制台
#include "kernel/types.h"
#include "user/user.h"
int
main()
{
char buf[64];
while(1){
//从console读取输入,通过system call的read函数实现
int n = read(0, buf, sizeof(buf));
//无输入结束程序
if(n <= 0)
break;
//将console输入输出到控制台,通过system call的write函数实现
write(1, buf, n);
}
exit(0);
}
参考:https://pdos.csail.mit.edu/6.828/2020/lec/l-overview/copy.c
2,编译配置
在Makefile 152行添加配置
3,测试添加程序
启动xv6后,执行copy
4,过程分析
xv6通过qemu启动完成后,启动了shell进程。通过shell,启动子进程copy。
三、xv6中shell简析
shell也是一个用户进程,不过在xv6启动后就运行了。源码为user/sh.c,入口函数在145行。
在shell下输入命令行,shell程序读取输入内容,通过调用fork(system call)开启一个shell的子进程,
shell进程利用wait(system call),等待子进程执行完后继续执行。
//创建子进程
//父进程中fork1()返回创建的子进程pid;子进程中fork1执行成功返回0。所以子进程才会执行runcmd()
if(fork1() == 0)
//在子进程中执行shell中输入的程序
runcmd(parsecmd(buf));
//父进程等待子进程执行结束
wait(0);
四、ping pong练习
1,实验要求
写一个程序,使用unix system calls在两个进程间”ping-pong“一个字节,使用一对pipe,一个pipe对应一个方向,另外一个pipe对应另外一个方向。
2,源码
#include <kernel/types.h>
#include <user/user.h>
/*
xv6可运行
chapter01: ping pong练习程序
*/
int main(){
//pipe1(p1):写端父进程,读端子进程
//pipe2(p2);写端子进程,读端父进程
int p1[2],p2[2];
//来回传输的字符数组:一个字节
char buffer[] = {'X'};
//传输字符数组的长度
long length = sizeof(buffer);
//父进程写,子进程读的pipe
pipe(p1);
//子进程写,父进程读的pipe
pipe(p2);
//子进程
if(fork() == 0){
//关掉不用的p1[1]、p2[0]
close(p1[1]);
close(p2[0]);
//子进程从pipe1的读端,读取字符数组
if(read(p1[0], buffer, length) != length){
printf("a--->b read error!");
exit(1);
}
//打印读取到的字符数组
printf("%d: received ping\n", getpid());
//子进程向pipe2的写端,写入字符数组
if(write(p2[1], buffer, length) != length){
printf("a<---b write error!");
exit(1);
}
exit(0);
}
//关掉不用的p1[0]、p2[1]
close(p1[0]);
close(p2[1]);
//父进程向pipe1的写端,写入字符数组
if(write(p1[1], buffer, length) != length){
printf("a--->b write error!");
exit(1);
}
//父进程从pipe2的读端,读取字符数组
if(read(p2[0], buffer, length) != length){
printf("a<---b read error!");
exit(1);
}
//打印读取的字符数组
printf("%d: received pong\n", getpid());
//等待进程子退出
wait(0);
exit(0);
}
3,辅助图
4,执行效果
5,测试效果
在xv6-labs-2020中,执行下面指令,测试程序
./grade-lab-util pingpong
四、sleep实验
1,实验要求
写一个用户程序,调用sleep system call实现,执行sleep 10,表示程序等待10个时钟周期。
2,源码
#include "kernel/types.h"
#include "user/user.h"
int main(int argn, char *argv[]){
if(argn != 2){
fprintf(2, "must 1 argument for sleep\n");
exit(1);
}
int sleepNum = atoi(argv[1]);
printf("(nothing happens for a little while)\n");
sleep(sleepNum);
exit(0);
}
3,测试结果
在xv6-labs-2020中,执行下面指令,测试程序
./grade-lab-util sleep
五、primes实验
1,实验要求
将2-35中的素数打印出来,要求利用管道理念。
2,源码
#include "kernel/types.h"
#include "user/user.h"
void func(int *input, int num){
if(num == 1){
printf("prime %d\n", *input);
return;
}
int p[2],i;
int prime = *input;
int temp;
printf("prime %d\n", prime);
pipe(p);
if(fork() == 0){
for(i = 0; i < num; i++){
temp = *(input + i);
write(p[1], (char *)(&temp), 4);
}
exit(0);
}
close(p[1]);
if(fork() == 0){
int counter = 0;
char buffer[4];
while(read(p[0], buffer, 4) != 0){
temp = *((int *)buffer);
if(temp % prime != 0){
*input = temp;
input += 1;
counter++;
}
}
func(input - counter, counter);
exit(0);
}
wait(0);
wait(0);
}
int main(){
int input[34];
int i = 0;
for(; i < 34; i++){
input[i] = i+2;
}
func(input, 34);
exit(0);
}
3,执行结果
4,测试结果
六、find实验
1,实验目的
实现find
2,源码
#include "kernel/types.h"
#include "kernel/fcntl.h"
#include "kernel/stat.h"
#include "kernel/fs.h"
#include "user/user.h"
/*
将路径格式化为文件名
*/
char* fmt_name(char *path){
static char buf[DIRSIZ+1];
char *p;
// Find first character after last slash.
for(p=path+strlen(path); p >= path && *p != '/'; p--);
p++;
memmove(buf, p, strlen(p)+1);
return buf;
}
/*
系统文件名与要查找的文件名,若一致,打印系统文件完整路径
*/
void eq_print(char *fileName, char *findName){
if(strcmp(fmt_name(fileName), findName) == 0){
printf("%s\n", fileName);
}
}
/*
在某路径中查找某文件
*/
void find(char *path, char *findName){
int fd;
struct stat st;
if((fd = open(path, O_RDONLY)) < 0){
fprintf(2, "find: cannot open %s\n", path);
return;
}
if(fstat(fd, &st) < 0){
fprintf(2, "find: cannot stat %s\n", path);
close(fd);
return;
}
char buf[512], *p;
struct dirent de;
switch(st.type){
case T_FILE:
eq_print(path, findName);
break;
case T_DIR:
if(strlen(path) + 1 + DIRSIZ + 1 > sizeof buf){
printf("find: path too long\n");
break;
}
strcpy(buf, path);
p = buf+strlen(buf);
*p++ = '/';
while(read(fd, &de, sizeof(de)) == sizeof(de)){
//printf("de.name:%s, de.inum:%d\n", de.name, de.inum);
if(de.inum == 0 || de.inum == 1 || strcmp(de.name, ".")==0 || strcmp(de.name, "..")==0)
continue;
memmove(p, de.name, strlen(de.name));
p[strlen(de.name)] = 0;
find(buf, findName);
}
break;
}
close(fd);
}
int main(int argc, char *argv[]){
if(argc < 3){
printf("find: find <path> <fileName>\n");
exit(0);
}
find(argv[1], argv[2]);
exit(0);
}
3,执行结果
find当前目录下文件名为ls的文件
4,测试结果
七、xargs实验
1,实验目的
实现类似unix xargs类似功能,比如echo hello too|xargs echo bye,要输出bye hello too;
即等价于echo bye hello too,将上个命令输出的每行作为参数,拼接到xargs后面的指令后面。
echo hello too输出为hello too,将其拼接到echo bye后面,就是echo bye hello too。
2,源码
#include "kernel/types.h"
#include "user/user.h"
int main(int argc, char *argv[]){
int i;
int j = 0;
int k;
int l,m = 0;
char block[32];
char buf[32];
char *p = buf;
char *lineSplit[32];
for(i = 1; i < argc; i++){
lineSplit[j++] = argv[i];
}
while( (k = read(0, block, sizeof(block))) > 0){
for(l = 0; l < k; l++){
if(block[l] == '\n'){
buf[m] = 0;
m = 0;
lineSplit[j++] = p;
p = buf;
lineSplit[j] = 0;
j = argc - 1;
if(fork() == 0){
exec(argv[1], lineSplit);
}
wait(0);
}else if(block[l] == ' ') {
buf[m++] = 0;
lineSplit[j++] = p;
p = &buf[m];
}else {
buf[m++] = block[l];
}
}
}
exit(0);
}
3,执行结果
4,测试结果
在xv6中执行:sh <xargstest.sh
在xv6-labs-2020中执行:./grade-lab-util xargs
更多推荐
所有评论(0)