ik_max_word和 ik_smart介绍

学习过Solr或Elasticsearch的同学都知道IK分词器,它是一个针对中文的分词器。
IK分词器地址:https://github.com/medcl/elasticsearch-analysis-ik
IK分词器有两种分词模式:ik_max_word和ik_smart模式。

1、ik_max_word

会将文本做最细粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为“中华人民共和国、中华人民、中华、华人、人民共和国、人民、共和国、大会堂、大会、会堂等词语。

2、ik_smart
会做最粗粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为中华人民共和国、人民大会堂。

测试两种分词模式的效果:

发送:post localhost:9200/_analyze
测试ik_max_word
{“text”:“中华人民共和国人民大会堂”,“analyzer”:“ik_max_word” }
测试ik_smart
{“text”:“中华人民共和国人民大会堂”,“analyzer”:“ik_smart” }

最佳实践

两种分词器使用的最佳实践是:索引时用ik_max_word,在搜索时用ik_smart。
即:索引时最大化的将文章内容分词,搜索时更精确的搜索到想要的结果。

举个例子:
我是个用户,输入“华为手机”,我此时的想法是想搜索出“华为手机”的商品,而不是华为其它的商品,也就是商品信息中必须只有华为手机这个词。
此时使用ik_smart和ik_max_word都会将华为手机拆分为华为和手机两个词,那些只包括“华为”这个词的信息也被搜索出来了,我的目标是搜索只包含华为手机这个词的信息,这没有满足我的目标。

怎么解决呢?
我们可以将华为手机添加到自定义词库,添加后两个分词器的效果为:

ik_max_word 的分词效果:

{
“tokens”: [
{
“token”: “华为手机”,
“start_offset”: 0,
“end_offset”: 4,
“type”: “CN_WORD”,
“position”: 0
}
,
{
“token”: “华为”,
“start_offset”: 0,
“end_offset”: 2,
“type”: “CN_WORD”,
“position”: 1
}
,
{
“token”: “手机”,
“start_offset”: 2,
“end_offset”: 4,
“type”: “CN_WORD”,
“position”: 2
}
]
}

ik_smart的分词效果:

{
“tokens”: [
{
“token”: “华为手机”,
“start_offset”: 0,
“end_offset”: 4,
“type”: “CN_WORD”,
“position”: 0
}
]
}

看到两个分词器的区别了吧,因为华为手机是一个词,所以ik_smart不再细粒度分了。
此时,我们可以在索引时使用 ik_max_word,在搜索时用ik_smart。

当输入 华为手机 关键字,只搜索到 包含华为手机的信息,符合用户要求。
如果我想将包含华为 这个词的信息也搜索出来怎么办呢?
那就输入 “华为 华为手机”(注意华为后边有个空格),那就会将包含华为、华为手机的信息都搜索出来。

根据上边举的例子,可以思考下,我想搜索手机壳怎么办?用户肯定只想搜索出手机壳的信息,不想搜索出来一推手机。

根据上边举的例子,可以思考下,如果搜索时用ik_max_word会有什么结果。
跟传智燕青一起学Elasticsearch课程视频分享:https://blog.csdn.net/weixin_44062339/article/details/99052909

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐